Shared Latent Space by Both Languages in Non-Autoregressive Neural Machine Translation
- URL: http://arxiv.org/abs/2305.03511v2
- Date: Mon, 9 Sep 2024 01:44:27 GMT
- Title: Shared Latent Space by Both Languages in Non-Autoregressive Neural Machine Translation
- Authors: DongNyeong Heo, Heeyoul Choi,
- Abstract summary: Non-autoregressive neural machine translation (NAT) offers substantial translation speed up compared to autoregressive neural machine translation (AT)
Latent variable modeling has emerged as a promising approach to bridge this quality gap.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Non-autoregressive neural machine translation (NAT) offers substantial translation speed up compared to autoregressive neural machine translation (AT) at the cost of translation quality. Latent variable modeling has emerged as a promising approach to bridge this quality gap, particularly for addressing the chronic multimodality problem in NAT. In the previous works that used latent variable modeling, they added an auxiliary model to estimate the posterior distribution of the latent variable conditioned on the source and target sentences. However, it causes several disadvantages, such as redundant information extraction in the latent variable, increasing the number of parameters, and a tendency to ignore some information from the inputs. In this paper, we propose a novel latent variable modeling that integrates a dual reconstruction perspective and an advanced hierarchical latent modeling with a shared intermediate latent space across languages. This latent variable modeling hypothetically alleviates or prevents the above disadvantages. In our experiment results, we present comprehensive demonstrations that our proposed approach infers superior latent variables which lead better translation quality. Finally, in the benchmark translation tasks, such as WMT, we demonstrate that our proposed method significantly improves translation quality compared to previous NAT baselines including the state-of-the-art NAT model.
Related papers
- Optimizing Non-Autoregressive Transformers with Contrastive Learning [74.46714706658517]
Non-autoregressive Transformers (NATs) reduce the inference latency of Autoregressive Transformers (ATs) by predicting words all at once rather than in sequential order.
In this paper, we propose to ease the difficulty of modality learning via sampling from the model distribution instead of the data distribution.
arXiv Detail & Related papers (2023-05-23T04:20:13Z) - Tailoring Language Generation Models under Total Variation Distance [55.89964205594829]
The standard paradigm of neural language generation adopts maximum likelihood estimation (MLE) as the optimizing method.
We develop practical bounds to apply it to language generation.
We introduce the TaiLr objective that balances the tradeoff of estimating TVD.
arXiv Detail & Related papers (2023-02-26T16:32:52Z) - Learning to Generalize to More: Continuous Semantic Augmentation for
Neural Machine Translation [50.54059385277964]
We present a novel data augmentation paradigm termed Continuous Semantic Augmentation (CsaNMT)
CsaNMT augments each training instance with an adjacency region that could cover adequate variants of literal expression under the same meaning.
arXiv Detail & Related papers (2022-04-14T08:16:28Z) - Modelling Latent Translations for Cross-Lingual Transfer [47.61502999819699]
We propose a new technique that integrates both steps of the traditional pipeline (translation and classification) into a single model.
We evaluate our novel latent translation-based model on a series of multilingual NLU tasks.
We report gains for both zero-shot and few-shot learning setups, up to 2.7 accuracy points on average.
arXiv Detail & Related papers (2021-07-23T17:11:27Z) - Modeling Coverage for Non-Autoregressive Neural Machine Translation [9.173385214565451]
We propose a novel Coverage-NAT to model the coverage information directly by a token-level coverage iterative refinement mechanism and a sentence-level coverage agreement.
Experimental results on WMT14 En-De and WMT16 En-Ro translation tasks show that our method can alleviate those errors and achieve strong improvements over the baseline system.
arXiv Detail & Related papers (2021-04-24T07:33:23Z) - Enriching Non-Autoregressive Transformer with Syntactic and
SemanticStructures for Neural Machine Translation [54.864148836486166]
We propose to incorporate the explicit syntactic and semantic structures of languages into a non-autoregressive Transformer.
Our model achieves a significantly faster speed, as well as keeps the translation quality when compared with several state-of-the-art non-autoregressive models.
arXiv Detail & Related papers (2021-01-22T04:12:17Z) - Variational Neural Machine Translation with Normalizing Flows [13.537869825364718]
Variational Neural Machine Translation (VNMT) is an attractive framework for modeling the generation of target translations.
We propose to apply the VNMT framework to the state-of-the-art Transformer and introduce a more flexible approximate posterior based on normalizing flows.
arXiv Detail & Related papers (2020-05-28T13:30:53Z) - Improve Variational Autoencoder for Text Generationwith Discrete Latent
Bottleneck [52.08901549360262]
Variational autoencoders (VAEs) are essential tools in end-to-end representation learning.
VAEs tend to ignore latent variables with a strong auto-regressive decoder.
We propose a principled approach to enforce an implicit latent feature matching in a more compact latent space.
arXiv Detail & Related papers (2020-04-22T14:41:37Z) - Discrete Variational Attention Models for Language Generation [51.88612022940496]
We propose a discrete variational attention model with categorical distribution over the attention mechanism owing to the discrete nature in languages.
Thanks to the property of discreteness, the training of our proposed approach does not suffer from posterior collapse.
arXiv Detail & Related papers (2020-04-21T05:49:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.