Towards Zero-Shot Frame Semantic Parsing with Task Agnostic Ontologies
and Simple Labels
- URL: http://arxiv.org/abs/2305.03793v1
- Date: Fri, 5 May 2023 18:47:18 GMT
- Title: Towards Zero-Shot Frame Semantic Parsing with Task Agnostic Ontologies
and Simple Labels
- Authors: Danilo Ribeiro, Omid Abdar, Jack Goetz, Mike Ross, Annie Dong, Kenneth
Forbus, Ahmed Mohamed
- Abstract summary: OpenFSP is a framework for easy creation of new domains from simple labels.
Our approach relies on creating a small, but expressive, set of domain agnostic slot types.
Our model outperforms strong baselines in this simple labels setting.
- Score: 0.9236074230806577
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Frame semantic parsing is an important component of task-oriented dialogue
systems. Current models rely on a significant amount training data to
successfully identify the intent and slots in the user's input utterance. This
creates a significant barrier for adding new domains to virtual assistant
capabilities, as creation of this data requires highly specialized NLP
expertise. In this work we propose OpenFSP, a framework that allows for easy
creation of new domains from a handful of simple labels that can be generated
without specific NLP knowledge. Our approach relies on creating a small, but
expressive, set of domain agnostic slot types that enables easy annotation of
new domains. Given such annotation, a matching algorithm relying on sentence
encoders predicts the intent and slots for domains defined by end-users.
Extensive experiments on the TopV2 dataset shows that our model outperforms
strong baselines in this simple labels setting.
Related papers
- Open-Vocabulary Camouflaged Object Segmentation [66.94945066779988]
We introduce a new task, open-vocabulary camouflaged object segmentation (OVCOS)
We construct a large-scale complex scene dataset (textbfOVCamo) containing 11,483 hand-selected images with fine annotations and corresponding object classes.
By integrating the guidance of class semantic knowledge and the supplement of visual structure cues from the edge and depth information, the proposed method can efficiently capture camouflaged objects.
arXiv Detail & Related papers (2023-11-19T06:00:39Z) - Towards Open-Domain Topic Classification [69.21234350688098]
We introduce an open-domain topic classification system that accepts user-defined taxonomy in real time.
Users will be able to classify a text snippet with respect to any candidate labels they want, and get instant response from our web interface.
arXiv Detail & Related papers (2023-06-29T20:25:28Z) - Coreset Sampling from Open-Set for Fine-Grained Self-Supervised Learning [10.57079240576682]
We introduce a novel Open-Set Self-Supervised Learning problem under the assumption that a large-scale unlabeled open-set is available.
In our problem setup, it is crucial to consider the distribution mismatch between the open-set and target dataset.
We demonstrate that SimCore significantly improves representation learning performance through extensive experimental settings.
arXiv Detail & Related papers (2023-03-20T13:38:29Z) - Automatic Synthesis of Diverse Weak Supervision Sources for Behavior
Analysis [37.077883083886114]
AutoSWAP is a framework for automatically synthesizing data-efficient task-level labeling functions.
We show that AutoSWAP is an effective way to automatically generate labeling functions that can significantly reduce expert effort for behavior analysis.
arXiv Detail & Related papers (2021-11-30T07:51:12Z) - X2Parser: Cross-Lingual and Cross-Domain Framework for Task-Oriented
Compositional Semantic Parsing [51.81533991497547]
Task-oriented compositional semantic parsing (TCSP) handles complex nested user queries.
We present X2 compared a transferable Cross-lingual and Cross-domain for TCSP.
We propose to predict flattened intents and slots representations separately and cast both prediction tasks into sequence labeling problems.
arXiv Detail & Related papers (2021-06-07T16:40:05Z) - Knowledge Graph Anchored Information-Extraction for Domain-Specific
Insights [1.6308268213252761]
We use a task-based approach for fulfilling specific information needs within a new domain.
A pipeline constructed of state of the art NLP technologies is used to automatically extract an instance level semantic structure.
arXiv Detail & Related papers (2021-04-18T19:28:10Z) - Streaming Self-Training via Domain-Agnostic Unlabeled Images [62.57647373581592]
We present streaming self-training (SST) that aims to democratize the process of learning visual recognition models.
Key to SST are two crucial observations: (1) domain-agnostic unlabeled images enable us to learn better models with a few labeled examples without any additional knowledge or supervision; and (2) learning is a continuous process and can be done by constructing a schedule of learning updates.
arXiv Detail & Related papers (2021-04-07T17:58:39Z) - Generating Synthetic Data for Task-Oriented Semantic Parsing with
Hierarchical Representations [0.8203855808943658]
In this work, we explore the possibility of generating synthetic data for neural semantic parsing.
Specifically, we first extract masked templates from the existing labeled utterances, and then fine-tune BART to generate synthetic utterances conditioning.
We show the potential of our approach when evaluating on the Facebook TOP dataset for navigation domain.
arXiv Detail & Related papers (2020-11-03T22:55:40Z) - Domain Adaptive Semantic Segmentation Using Weak Labels [115.16029641181669]
We propose a novel framework for domain adaptation in semantic segmentation with image-level weak labels in the target domain.
We develop a weak-label classification module to enforce the network to attend to certain categories.
In experiments, we show considerable improvements with respect to the existing state-of-the-arts in UDA and present a new benchmark in the WDA setting.
arXiv Detail & Related papers (2020-07-30T01:33:57Z) - Automatic Discovery of Novel Intents & Domains from Text Utterances [18.39942131996558]
We propose a novel framework, ADVIN, to automatically discover novel domains and intents from large volumes of unlabeled data.
ADVIN significantly outperforms baselines on three benchmark datasets, and real user utterances from a commercial voice-powered agent.
arXiv Detail & Related papers (2020-05-22T00:47:10Z) - Few-shot Natural Language Generation for Task-Oriented Dialog [113.07438787659859]
We present FewShotWoz, the first NLG benchmark to simulate the few-shot learning setting in task-oriented dialog systems.
We develop the SC-GPT model, which is pre-trained on a large set of annotated NLG corpus to acquire the controllable generation ability.
Experiments on FewShotWoz and the large Multi-Domain-WOZ datasets show that the proposed SC-GPT significantly outperforms existing methods.
arXiv Detail & Related papers (2020-02-27T18:48:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.