Spatiotemporal Transformer for Stock Movement Prediction
- URL: http://arxiv.org/abs/2305.03835v1
- Date: Fri, 5 May 2023 20:30:30 GMT
- Title: Spatiotemporal Transformer for Stock Movement Prediction
- Authors: Daniel Boyle, Jugal Kalita
- Abstract summary: We propose STST, a novel approach using a Spatiotemporal Transformer-LSTM model for stock movement prediction.
Our model obtains accuracies of 63.707 and 56.879 percent against the ACL18 and KDD17 datasets, respectively.
It obtained a minimum of 10.41% higher profit than the S&P500 stock index, with a minimum annualized return of 31.24%.
- Score: 2.792030485253753
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Financial markets are an intriguing place that offer investors the potential
to gain large profits if timed correctly. Unfortunately, the dynamic,
non-linear nature of financial markets makes it extremely hard to predict
future price movements. Within the US stock exchange, there are a countless
number of factors that play a role in the price of a company's stock, including
but not limited to financial statements, social and news sentiment, overall
market sentiment, political happenings and trading psychology. Correlating
these factors is virtually impossible for a human. Therefore, we propose STST,
a novel approach using a Spatiotemporal Transformer-LSTM model for stock
movement prediction. Our model obtains accuracies of 63.707 and 56.879 percent
against the ACL18 and KDD17 datasets, respectively. In addition, our model was
used in simulation to determine its real-life applicability. It obtained a
minimum of 10.41% higher profit than the S&P500 stock index, with a minimum
annualized return of 31.24%.
Related papers
- When AI Meets Finance (StockAgent): Large Language Model-based Stock Trading in Simulated Real-world Environments [55.19252983108372]
We have developed a multi-agent AI system called StockAgent, driven by LLMs.
The StockAgent allows users to evaluate the impact of different external factors on investor trading.
It avoids the test set leakage issue present in existing trading simulation systems based on AI Agents.
arXiv Detail & Related papers (2024-07-15T06:49:30Z) - Short-term Volatility Estimation for High Frequency Trades using
Gaussian processes (GPs) [0.0]
It is crucial to make necessary and regular short and long-term stock price volatility forecasts for the safety and economics of investors returns.
This paper implements a combination of numeric and probabilistic models for short-term volatility and return forecasting for high-frequency trades.
arXiv Detail & Related papers (2023-11-18T02:03:48Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - HireVAE: An Online and Adaptive Factor Model Based on Hierarchical and
Regime-Switch VAE [113.47287249524008]
It is still an open question to build a factor model that can conduct stock prediction in an online and adaptive setting.
We propose the first deep learning based online and adaptive factor model, HireVAE, at the core of which is a hierarchical latent space that embeds the relationship between the market situation and stock-wise latent factors.
Across four commonly used real stock market benchmarks, the proposed HireVAE demonstrate superior performance in terms of active returns over previous methods.
arXiv Detail & Related papers (2023-06-05T12:58:13Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z) - FinBERT-LSTM: Deep Learning based stock price prediction using News
Sentiment Analysis [0.0]
Being able to predict short term movements in the market enables investors to reap greater returns on their investments.
We use Deep Learning networks to predict stock prices, assimilating financial, business and technology news articles.
arXiv Detail & Related papers (2022-11-11T15:13:16Z) - Transformer-Based Deep Learning Model for Stock Price Prediction: A Case
Study on Bangladesh Stock Market [0.0]
This paper concentrates on the application of transformer-based model to predict the price movement of eight specific stocks listed in Dhaka Stock Exchange (DSE)
Our experiments demonstrate promising results and acceptable root mean squared error on most of the stocks.
arXiv Detail & Related papers (2022-08-17T14:03:28Z) - HiSA-SMFM: Historical and Sentiment Analysis based Stock Market
Forecasting Model [3.6704226968275258]
The aim of this paper is to predict the future of the financial stocks of a company with improved accuracy.
It has been found by analyzing the existing research in the area of sentiment analysis that there is a strong correlation between the movement of stock prices and the publication of news articles.
arXiv Detail & Related papers (2022-03-10T17:03:38Z) - Stock Price Prediction Under Anomalous Circumstances [81.37657557441649]
This paper aims to capture the movement pattern of stock prices under anomalous circumstances.
We train ARIMA and LSTM models at the single-stock level, industry level, and general market level.
Based on 100 companies' stock prices in the period of 2016 to 2020, the models achieve an average prediction accuracy of 98%.
arXiv Detail & Related papers (2021-09-14T18:50:38Z) - A Sentiment Analysis Approach to the Prediction of Market Volatility [62.997667081978825]
We have explored the relationship between sentiment extracted from financial news and tweets and FTSE100 movements.
The sentiment captured from news headlines could be used as a signal to predict market returns; the same does not apply for volatility.
We developed an accurate classifier for the prediction of market volatility in response to the arrival of new information.
arXiv Detail & Related papers (2020-12-10T01:15:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.