REINFOREST: Reinforcing Semantic Code Similarity for Cross-Lingual Code Search Models
- URL: http://arxiv.org/abs/2305.03843v2
- Date: Mon, 15 Apr 2024 18:24:40 GMT
- Title: REINFOREST: Reinforcing Semantic Code Similarity for Cross-Lingual Code Search Models
- Authors: Anthony Saieva, Saikat Chakraborty, Gail Kaiser,
- Abstract summary: This paper introduces a novel code-to-code search technique that enhances the performance of Large Language Models (LLMs)
We present the first-ever code search method that encodes dynamic information during training without the need to execute either the corpus under search or the search query at inference time.
- Score: 11.78036105494679
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: This paper introduces a novel code-to-code search technique that enhances the performance of Large Language Models (LLMs) by including both static and dynamic features as well as utilizing both similar and dissimilar examples during training. We present the first-ever code search method that encodes dynamic runtime information during training without the need to execute either the corpus under search or the search query at inference time and the first code search technique that trains on both positive and negative reference samples. To validate the efficacy of our approach, we perform a set of studies demonstrating the capability of enhanced LLMs to perform cross-language code-to-code search. Our evaluation demonstrates that the effectiveness of our approach is consistent across various model architectures and programming languages. We outperform the state-of-the-art cross-language search tool by up to 44.7\%. Moreover, our ablation studies reveal that even a single positive and negative reference sample in the training process results in substantial performance improvements demonstrating both similar and dissimilar references are important parts of code search. Importantly, we show that enhanced well-crafted, fine-tuned models consistently outperform enhanced larger modern LLMs without fine tuning, even when enhancing the largest available LLMs highlighting the importance for open-sourced models. To ensure the reproducibility and extensibility of our research, we present an open-sourced implementation of our tool and training procedures called REINFOREST.
Related papers
- CodeXEmbed: A Generalist Embedding Model Family for Multiligual and Multi-task Code Retrieval [103.116634967815]
We introduce CodeXEmbed, a family of large-scale code embedding models ranging from 400M to 7B parameters.
Our novel training pipeline unifies multiple programming languages and transforms various code-related tasks into a common retrieval framework.
Our 7B model sets a new state-of-the-art (SOTA) in code retrieval, outperforming the previous leading model, Voyage-Code, by over 20% on CoIR benchmark.
arXiv Detail & Related papers (2024-11-19T16:54:45Z) - EmbedLLM: Learning Compact Representations of Large Language Models [28.49433308281983]
We propose EmbedLLM, a framework designed to learn compact vector representations of Large Language Models.
We introduce an encoder-decoder approach for learning such embeddings, along with a systematic framework to evaluate their effectiveness.
Empirical results show that EmbedLLM outperforms prior methods in model routing both in accuracy and latency.
arXiv Detail & Related papers (2024-10-03T05:43:24Z) - Distilling Vision-Language Pretraining for Efficient Cross-Modal Retrieval [44.61221990245263]
Learning to hash is a practical solution for efficient retrieval, offering fast search speed and low storage cost.
We explore the potential of enhancing the performance of learning to hash with the proliferation of powerful pre-trained models.
We introduce a novel method named Distillation for Cross-Modal Quantization (DCMQ) to improve hash representation learning.
arXiv Detail & Related papers (2024-05-23T15:54:59Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
We introduce StepCoder, a novel framework for code generation, consisting of two main components.
CCCS addresses the exploration challenge by breaking the long sequences code generation task into a Curriculum of Code Completion Subtasks.
FGO only optimize the model by masking the unexecuted code segments to provide Fine-Grained Optimization.
Our method improves the ability to explore the output space and outperforms state-of-the-art approaches in corresponding benchmarks.
arXiv Detail & Related papers (2024-02-02T13:14:31Z) - Exploring Representation-Level Augmentation for Code Search [50.94201167562845]
We explore augmentation methods that augment data (both code and query) at representation level which does not require additional data processing and training.
We experimentally evaluate the proposed representation-level augmentation methods with state-of-the-art code search models on a large-scale public dataset.
arXiv Detail & Related papers (2022-10-21T22:47:37Z) - CorpusBrain: Pre-train a Generative Retrieval Model for
Knowledge-Intensive Language Tasks [62.22920673080208]
Single-step generative model can dramatically simplify the search process and be optimized in end-to-end manner.
We name the pre-trained generative retrieval model as CorpusBrain as all information about the corpus is encoded in its parameters without the need of constructing additional index.
arXiv Detail & Related papers (2022-08-16T10:22:49Z) - Enhancing Semantic Code Search with Multimodal Contrastive Learning and
Soft Data Augmentation [50.14232079160476]
We propose a new approach with multimodal contrastive learning and soft data augmentation for code search.
We conduct extensive experiments to evaluate the effectiveness of our approach on a large-scale dataset with six programming languages.
arXiv Detail & Related papers (2022-04-07T08:49:27Z) - Efficient Nearest Neighbor Language Models [114.40866461741795]
Non-parametric neural language models (NLMs) learn predictive distributions of text utilizing an external datastore.
We show how to achieve up to a 6x speed-up in inference speed while retaining comparable performance.
arXiv Detail & Related papers (2021-09-09T12:32:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.