Transformer-Based Hierarchical Clustering for Brain Network Analysis
- URL: http://arxiv.org/abs/2305.04142v1
- Date: Sat, 6 May 2023 22:14:13 GMT
- Title: Transformer-Based Hierarchical Clustering for Brain Network Analysis
- Authors: Wei Dai, Hejie Cui, Xuan Kan, Ying Guo, Sanne van Rooij, Carl Yang
- Abstract summary: We propose a novel interpretable transformer-based model for joint hierarchical cluster identification and brain network classification.
With the help of hierarchical clustering, the model achieves increased accuracy and reduced runtime complexity while providing plausible insight into the functional organization of brain regions.
- Score: 13.239896897835191
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Brain networks, graphical models such as those constructed from MRI, have
been widely used in pathological prediction and analysis of brain functions.
Within the complex brain system, differences in neuronal connection strengths
parcellate the brain into various functional modules (network communities),
which are critical for brain analysis. However, identifying such communities
within the brain has been a nontrivial issue due to the complexity of neuronal
interactions. In this work, we propose a novel interpretable transformer-based
model for joint hierarchical cluster identification and brain network
classification. Extensive experimental results on real-world brain network
datasets show that with the help of hierarchical clustering, the model achieves
increased accuracy and reduced runtime complexity while providing plausible
insight into the functional organization of brain regions. The implementation
is available at https://github.com/DDVD233/THC.
Related papers
- Brain-like Functional Organization within Large Language Models [58.93629121400745]
The human brain has long inspired the pursuit of artificial intelligence (AI)
Recent neuroimaging studies provide compelling evidence of alignment between the computational representation of artificial neural networks (ANNs) and the neural responses of the human brain to stimuli.
In this study, we bridge this gap by directly coupling sub-groups of artificial neurons with functional brain networks (FBNs)
This framework links the AN sub-groups to FBNs, enabling the delineation of brain-like functional organization within large language models (LLMs)
arXiv Detail & Related papers (2024-10-25T13:15:17Z) - D-CoRP: Differentiable Connectivity Refinement for Functional Brain Networks [4.675640373196467]
Existing models for brain networks typically focus on brain regions or overlook the complexity of brain connectivities.
We develop a differentiable module for refining brain connectivity.
Our experimental results show that the proposed method can significantly improve the performance of various baseline models.
arXiv Detail & Related papers (2024-05-28T23:49:52Z) - BrainODE: Dynamic Brain Signal Analysis via Graph-Aided Neural Ordinary Differential Equations [67.79256149583108]
We propose a novel model called BrainODE to achieve continuous modeling of dynamic brain signals.
By learning latent initial values and neural ODE functions from irregular time series, BrainODE effectively reconstructs brain signals at any time point.
arXiv Detail & Related papers (2024-04-30T10:53:30Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - BrainNetDiff: Generative AI Empowers Brain Network Generation via
Multimodal Diffusion Model [7.894526238189559]
We introduce BrainNetDiff, which combines a multi-head Transformer encoder to extract relevant features from fMRI time series.
We validate applicability of this framework in the construction of brain network across healthy and neurologically impaired cohorts.
arXiv Detail & Related papers (2023-11-09T08:27:12Z) - Brain Diffuser: An End-to-End Brain Image to Brain Network Pipeline [54.93591298333767]
Brain diffuser is a diffusion based end-to-end brain network generative model.
It exploits more structural connectivity features and disease-related information by analyzing disparities in structural brain networks across subjects.
For the case of Alzheimer's disease, the proposed model performs better than the results from existing toolkits on the Alzheimer's Disease Neuroimaging Initiative database.
arXiv Detail & Related papers (2023-03-11T14:04:58Z) - Explainable fMRI-based Brain Decoding via Spatial Temporal-pyramid Graph
Convolutional Network [0.8399688944263843]
Existing machine learning methods for fMRI-based brain decoding either suffer from low classification performance or poor explainability.
We propose a biologically inspired architecture, Spatial Temporal-pyramid Graph Convolutional Network (STpGCN), to capture the spatial-temporal graph representation of functional brain activities.
We conduct extensive experiments on fMRI data under 23 cognitive tasks from Human Connectome Project (HCP) S1200.
arXiv Detail & Related papers (2022-10-08T12:14:33Z) - Interpretable Graph Neural Networks for Connectome-Based Brain Disorder
Analysis [31.281194583900998]
We propose an interpretable framework to analyze disorder-specific Regions of Interest (ROIs) and prominent connections.
The proposed framework consists of two modules: a brain-network-oriented backbone model for disease prediction and a globally shared explanation generator.
arXiv Detail & Related papers (2022-06-30T08:02:05Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
Graph mining on brain networks may facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
We propose a novel graph learning framework, known as Deep Signed Brain Networks (DSBN), with a signed graph encoder.
We validate our framework on clinical phenotype and neurodegenerative disease prediction tasks using two independent, publicly available datasets.
arXiv Detail & Related papers (2022-05-06T03:45:36Z) - Deep Reinforcement Learning Guided Graph Neural Networks for Brain
Network Analysis [61.53545734991802]
We propose a novel brain network representation framework, namely BN-GNN, which searches for the optimal GNN architecture for each brain network.
Our proposed BN-GNN improves the performance of traditional GNNs on different brain network analysis tasks.
arXiv Detail & Related papers (2022-03-18T07:05:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.