DEFENDER: DTW-Based Episode Filtering Using Demonstrations for Enhancing
RL Safety
- URL: http://arxiv.org/abs/2305.04727v1
- Date: Mon, 8 May 2023 14:23:27 GMT
- Title: DEFENDER: DTW-Based Episode Filtering Using Demonstrations for Enhancing
RL Safety
- Authors: Andr\'e Correia and Lu\'is Alexandre
- Abstract summary: We propose a task-agnostic method that leverages small sets of safe and unsafe demonstrations to improve the safety of RL agents during learning.
We evaluate our method on three tasks from OpenAI Gym's Mujoco benchmark and two state-of-the-art RL algorithms.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deploying reinforcement learning agents in the real world can be challenging
due to the risks associated with learning through trial and error. We propose a
task-agnostic method that leverages small sets of safe and unsafe
demonstrations to improve the safety of RL agents during learning. The method
compares the current trajectory of the agent with both sets of demonstrations
at every step, and filters the trajectory if it resembles the unsafe
demonstrations. We perform ablation studies on different filtering strategies
and investigate the impact of the number of demonstrations on performance. Our
method is compatible with any stand-alone RL algorithm and can be applied to
any task. We evaluate our method on three tasks from OpenAI Gym's Mujoco
benchmark and two state-of-the-art RL algorithms. The results demonstrate that
our method significantly reduces the crash rate of the agent while converging
to, and in most cases even improving, the performance of the stand-alone agent.
Related papers
- Inverse-RLignment: Inverse Reinforcement Learning from Demonstrations for LLM Alignment [62.05713042908654]
We introduce Alignment from Demonstrations (AfD), a novel approach leveraging high-quality demonstration data to overcome these challenges.
We formalize AfD within a sequential decision-making framework, highlighting its unique challenge of missing reward signals.
Practically, we propose a computationally efficient algorithm that extrapolates over a tailored reward model for AfD.
arXiv Detail & Related papers (2024-05-24T15:13:53Z) - Task Phasing: Automated Curriculum Learning from Demonstrations [46.1680279122598]
Applying reinforcement learning to sparse reward domains is notoriously challenging due to insufficient guiding signals.
This paper introduces a principled task phasing approach that uses demonstrations to automatically generate a curriculum sequence.
Experimental results on 3 sparse reward domains demonstrate that our task phasing approaches outperform state-of-the-art approaches with respect to performance.
arXiv Detail & Related papers (2022-10-20T03:59:11Z) - Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels [112.63440666617494]
Reinforcement learning algorithms can succeed but require large amounts of interactions between the agent and the environment.
We propose a new method to solve it, using unsupervised model-based RL, for pre-training the agent.
We show robust performance on the Real-Word RL benchmark, hinting at resiliency to environment perturbations during adaptation.
arXiv Detail & Related papers (2022-09-24T14:22:29Z) - Ablation Study of How Run Time Assurance Impacts the Training and
Performance of Reinforcement Learning Agents [5.801944210870593]
We conduct an ablation study using evaluation best practices to investigate the impact of run time assurance (RTA) on effective learning.
Our conclusions shed light on the most promising directions of Safe Reinforcement Learning.
arXiv Detail & Related papers (2022-07-08T20:15:15Z) - Provably Safe Reinforcement Learning: Conceptual Analysis, Survey, and
Benchmarking [12.719948223824483]
reinforcement learning (RL) algorithms are crucial to unlock their potential for many real-world tasks.
However, vanilla RL and most safe RL approaches do not guarantee safety.
We introduce a categorization of existing provably safe RL methods, present the conceptual foundations for both continuous and discrete action spaces, and empirically benchmark existing methods.
We provide practical guidance on selecting provably safe RL approaches depending on the safety specification, RL algorithm, and type of action space.
arXiv Detail & Related papers (2022-05-13T16:34:36Z) - Self-Imitation Learning from Demonstrations [4.907551775445731]
Self-Imitation Learning exploits agent's past good experience to learn from suboptimal demonstrations.
We show that SILfD can learn from demonstrations that are noisy or far from optimal.
We also find SILfD superior to the existing state-of-the-art LfD algorithms in sparse environments.
arXiv Detail & Related papers (2022-03-21T11:56:56Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z) - Robust Reinforcement Learning on State Observations with Learned Optimal
Adversary [86.0846119254031]
We study the robustness of reinforcement learning with adversarially perturbed state observations.
With a fixed agent policy, we demonstrate that an optimal adversary to perturb state observations can be found.
For DRL settings, this leads to a novel empirical adversarial attack to RL agents via a learned adversary that is much stronger than previous ones.
arXiv Detail & Related papers (2021-01-21T05:38:52Z) - Robust Deep Reinforcement Learning through Adversarial Loss [74.20501663956604]
Recent studies have shown that deep reinforcement learning agents are vulnerable to small adversarial perturbations on the agent's inputs.
We propose RADIAL-RL, a principled framework to train reinforcement learning agents with improved robustness against adversarial attacks.
arXiv Detail & Related papers (2020-08-05T07:49:42Z) - Forgetful Experience Replay in Hierarchical Reinforcement Learning from
Demonstrations [55.41644538483948]
In this paper, we propose a combination of approaches that allow the agent to use low-quality demonstrations in complex vision-based environments.
Our proposed goal-oriented structuring of replay buffer allows the agent to automatically highlight sub-goals for solving complex hierarchical tasks in demonstrations.
The solution based on our algorithm beats all the solutions for the famous MineRL competition and allows the agent to mine a diamond in the Minecraft environment.
arXiv Detail & Related papers (2020-06-17T15:38:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.