Multi-grained Hypergraph Interest Modeling for Conversational
Recommendation
- URL: http://arxiv.org/abs/2305.04798v2
- Date: Thu, 26 Oct 2023 15:52:30 GMT
- Title: Multi-grained Hypergraph Interest Modeling for Conversational
Recommendation
- Authors: Chenzhan Shang, Yupeng Hou, Wayne Xin Zhao, Yaliang Li, Jing Zhang
- Abstract summary: We propose a novel multi-grained hypergraph interest modeling approach to capture user interest beneath intricate historical data.
In our approach, we first employ the hypergraph structure to model users' historical dialogue sessions and form a session-based hypergraph, which captures coarse-grained, session-level relations.
We further conduct multi-grained hypergraph convolution on the two kinds of hypergraphs, and utilize the enhanced representations to develop interest-aware CRS.
- Score: 75.65483522949857
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conversational recommender system (CRS) interacts with users through
multi-turn dialogues in natural language, which aims to provide high-quality
recommendations for user's instant information need. Although great efforts
have been made to develop effective CRS, most of them still focus on the
contextual information from the current dialogue, usually suffering from the
data scarcity issue. Therefore, we consider leveraging historical dialogue data
to enrich the limited contexts of the current dialogue session.
In this paper, we propose a novel multi-grained hypergraph interest modeling
approach to capture user interest beneath intricate historical data from
different perspectives. As the core idea, we employ hypergraph to represent
complicated semantic relations underlying historical dialogues. In our
approach, we first employ the hypergraph structure to model users' historical
dialogue sessions and form a session-based hypergraph, which captures
coarse-grained, session-level relations. Second, to alleviate the issue of data
scarcity, we use an external knowledge graph and construct a knowledge-based
hypergraph considering fine-grained, entity-level semantics. We further conduct
multi-grained hypergraph convolution on the two kinds of hypergraphs, and
utilize the enhanced representations to develop interest-aware CRS. Extensive
experiments on two benchmarks ReDial and TG-ReDial validate the effectiveness
of our approach on both recommendation and conversation tasks. Code is
available at: https://github.com/RUCAIBox/MHIM.
Related papers
- Generative Subgraph Retrieval for Knowledge Graph-Grounded Dialog Generation [17.437568540883106]
We propose Dialog generation with Generative Subgraph Retrieval (DialogGSR)
DialogGSR retrieves relevant knowledge subgraphs by directly generating their token sequences on top of language models.
It achieves state-of-the-art performance in knowledge graph-grounded dialog generation, as demonstrated on OpenDialKG and KOMODIS datasets.
arXiv Detail & Related papers (2024-10-12T03:33:42Z) - Leveraging Knowledge Graph Embedding for Effective Conversational Recommendation [4.079573593766921]
We propose a knowledge graph based conversational recommender system (referred as KG-CRS)
Specifically, we first integrate the user-item graph and item-attribute graph into a dynamic graph, dynamically changing during the dialogue process by removing negative items or attributes.
We then learn informative embedding of users, items, and attributes by also considering propagation through neighbors on the graph.
arXiv Detail & Related papers (2024-08-02T15:38:55Z) - Parameter-Efficient Conversational Recommender System as a Language
Processing Task [52.47087212618396]
Conversational recommender systems (CRS) aim to recommend relevant items to users by eliciting user preference through natural language conversation.
Prior work often utilizes external knowledge graphs for items' semantic information, a language model for dialogue generation, and a recommendation module for ranking relevant items.
In this paper, we represent items in natural language and formulate CRS as a natural language processing task.
arXiv Detail & Related papers (2024-01-25T14:07:34Z) - AUGUST: an Automatic Generation Understudy for Synthesizing
Conversational Recommendation Datasets [56.052803235932686]
We propose a novel automatic dataset synthesis approach that can generate both large-scale and high-quality recommendation dialogues.
In doing so, we exploit: (i) rich personalized user profiles from traditional recommendation datasets, (ii) rich external knowledge from knowledge graphs, and (iii) the conversation ability contained in human-to-human conversational recommendation datasets.
arXiv Detail & Related papers (2023-06-16T05:27:14Z) - Graph Based Network with Contextualized Representations of Turns in
Dialogue [0.0]
Dialogue-based relation extraction (RE) aims to extract relation(s) between two arguments that appear in a dialogue.
We propose the TUrn COntext awaRE Graph Convolutional Network (TUCORE-GCN) modeled by paying attention to the way people understand dialogues.
arXiv Detail & Related papers (2021-09-09T03:09:08Z) - Dialogue History Matters! Personalized Response Selectionin Multi-turn
Retrieval-based Chatbots [62.295373408415365]
We propose a personalized hybrid matching network (PHMN) for context-response matching.
Our contributions are two-fold: 1) our model extracts personalized wording behaviors from user-specific dialogue history as extra matching information.
We evaluate our model on two large datasets with user identification, i.e., personalized dialogue Corpus Ubuntu (P- Ubuntu) and personalized Weibo dataset (P-Weibo)
arXiv Detail & Related papers (2021-03-17T09:42:11Z) - Dialogue Relation Extraction with Document-level Heterogeneous Graph
Attention Networks [21.409522845011907]
Dialogue relation extraction (DRE) aims to detect the relation between two entities mentioned in a multi-party dialogue.
We present a graph attention network-based method for DRE where a graph contains meaningfully connected speaker, entity, entity-type, and utterance nodes.
We empirically show that this graph-based approach quite effectively captures the relations between different entity pairs in a dialogue as it outperforms the state-of-the-art approaches.
arXiv Detail & Related papers (2020-09-10T18:51:48Z) - Improving Conversational Recommender Systems via Knowledge Graph based
Semantic Fusion [77.21442487537139]
Conversational recommender systems (CRS) aim to recommend high-quality items to users through interactive conversations.
First, the conversation data itself lacks of sufficient contextual information for accurately understanding users' preference.
Second, there is a semantic gap between natural language expression and item-level user preference.
arXiv Detail & Related papers (2020-07-08T11:14:23Z) - ORD: Object Relationship Discovery for Visual Dialogue Generation [60.471670447176656]
We propose an object relationship discovery (ORD) framework to preserve the object interactions for visual dialogue generation.
A hierarchical graph convolutional network (HierGCN) is proposed to retain the object nodes and neighbour relationships locally, and then refines the object-object connections globally.
Experiments have proved that the proposed method can significantly improve the quality of dialogue by utilising the contextual information of visual relationships.
arXiv Detail & Related papers (2020-06-15T12:25:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.