FedHB: Hierarchical Bayesian Federated Learning
- URL: http://arxiv.org/abs/2305.04979v1
- Date: Mon, 8 May 2023 18:21:41 GMT
- Title: FedHB: Hierarchical Bayesian Federated Learning
- Authors: Minyoung Kim, Timothy Hospedales
- Abstract summary: We propose a novel hierarchical Bayesian approach to Federated Learning (FL)
Our model reasonably describes the generative process of clients' local data via hierarchical Bayesian modeling.
We show that our block-coordinate FL algorithm converges to an optimum of the objective at the rate of $O(sqrtt)$.
- Score: 11.936836827864095
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel hierarchical Bayesian approach to Federated Learning (FL),
where our model reasonably describes the generative process of clients' local
data via hierarchical Bayesian modeling: constituting random variables of local
models for clients that are governed by a higher-level global variate.
Interestingly, the variational inference in our Bayesian model leads to an
optimisation problem whose block-coordinate descent solution becomes a
distributed algorithm that is separable over clients and allows them not to
reveal their own private data at all, thus fully compatible with FL. We also
highlight that our block-coordinate algorithm has particular forms that subsume
the well-known FL algorithms including Fed-Avg and Fed-Prox as special cases.
Beyond introducing novel modeling and derivations, we also offer convergence
analysis showing that our block-coordinate FL algorithm converges to an (local)
optimum of the objective at the rate of $O(1/\sqrt{t})$, the same rate as
regular (centralised) SGD, as well as the generalisation error analysis where
we prove that the test error of our model on unseen data is guaranteed to
vanish as we increase the training data size, thus asymptotically optimal.
Related papers
- An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated learning (FL) is a distributed learning paradigm that enables multiple clients to learn a powerful global model by aggregating local training.
In this paper, we present a novel FL algorithm, i.e., FedIns, to handle intra-client data heterogeneity by enabling instance-adaptive inference in the FL framework.
Our experiments show that our FedIns outperforms state-of-the-art FL algorithms, e.g., a 6.64% improvement against the top-performing method with less than 15% communication cost on Tiny-ImageNet.
arXiv Detail & Related papers (2023-08-11T09:58:47Z) - Federated Variational Inference: Towards Improved Personalization and
Generalization [2.37589914835055]
We study personalization and generalization in stateless cross-device federated learning setups.
We first propose a hierarchical generative model and formalize it using Bayesian Inference.
We then approximate this process using Variational Inference to train our model efficiently.
We evaluate our model on FEMNIST and CIFAR-100 image classification and show that FedVI beats the state-of-the-art on both tasks.
arXiv Detail & Related papers (2023-05-23T04:28:07Z) - Confidence-aware Personalized Federated Learning via Variational
Expectation Maximization [34.354154518009956]
We present a novel framework for personalized Federated Learning (PFL)
PFL is a distributed learning scheme to train a shared model across clients.
We present a novel framework for PFL based on hierarchical modeling and variational inference.
arXiv Detail & Related papers (2023-05-21T20:12:27Z) - Performative Federated Learning: A Solution to Model-Dependent and
Heterogeneous Distribution Shifts [24.196279060605402]
We consider a federated learning (FL) system consisting of multiple clients and a server.
Unlike the conventional FL framework that assumes the client's data is static, we consider scenarios where the clients' data distributions may be reshaped by the deployed decision model.
arXiv Detail & Related papers (2023-05-08T23:29:24Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - Federated Learning via Variational Bayesian Inference: Personalization,
Sparsity and Clustering [6.829317124629158]
Federated learning (FL) is a promising framework that models distributed machine learning.
FL suffers performance degradation from heterogeneous and limited data.
We present a novel personalized Bayesian FL approach named pFedBayes and a clustered FL model named cFedbayes.
arXiv Detail & Related papers (2023-03-08T02:52:40Z) - Beyond ADMM: A Unified Client-variance-reduced Adaptive Federated
Learning Framework [82.36466358313025]
We propose a primal-dual FL algorithm, termed FedVRA, that allows one to adaptively control the variance-reduction level and biasness of the global model.
Experiments based on (semi-supervised) image classification tasks demonstrate superiority of FedVRA over the existing schemes.
arXiv Detail & Related papers (2022-12-03T03:27:51Z) - Gradient Masked Averaging for Federated Learning [24.687254139644736]
Federated learning allows a large number of clients with heterogeneous data to coordinate learning of a unified global model.
Standard FL algorithms involve averaging of model parameters or gradient updates to approximate the global model at the server.
We propose a gradient masked averaging approach for FL as an alternative to the standard averaging of client updates.
arXiv Detail & Related papers (2022-01-28T08:42:43Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z) - FedPD: A Federated Learning Framework with Optimal Rates and Adaptivity
to Non-IID Data [59.50904660420082]
Federated Learning (FL) has become a popular paradigm for learning from distributed data.
To effectively utilize data at different devices without moving them to the cloud, algorithms such as the Federated Averaging (FedAvg) have adopted a "computation then aggregation" (CTA) model.
arXiv Detail & Related papers (2020-05-22T23:07:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.