Getting More Juice Out of Your Data: Hard Pair Refinement Enhances Visual-Language Models Without Extra Data
- URL: http://arxiv.org/abs/2305.05208v3
- Date: Tue, 04 Feb 2025 02:54:38 GMT
- Title: Getting More Juice Out of Your Data: Hard Pair Refinement Enhances Visual-Language Models Without Extra Data
- Authors: Haonan Wang, Minbin Huang, Runhui Huang, Lanqing Hong, Hang Xu, Tianyang Hu, Xiaodan Liang, Zhenguo Li, Hong Cheng, Kenji Kawaguchi,
- Abstract summary: Contrastive Language-Image Pre-training (CLIP) has become the standard for cross-modal image-text representation learning.
We introduce HELIP, a cost-effective strategy that improves CLIP models by exploiting challenging text-image pairs within existing datasets in continuous training.
- Score: 122.282521548393
- License:
- Abstract: Contrastive Language-Image Pre-training (CLIP) has become the standard for cross-modal image-text representation learning. Improving CLIP typically requires additional data and retraining with new loss functions, but these demands raise resource and time costs, limiting practical use. In this work, we introduce HELIP, a cost-effective strategy that improves CLIP models by exploiting challenging text-image pairs within existing datasets in continuous training. This eliminates the need for additional data or extensive retraining. Moreover, HELIP integrates effortlessly into current training pipelines with minimal code modifications, allowing for quick and seamless implementation. On comprehensive benchmarks, HELIP consistently boosts existing models. In particular, within just two epochs of training, it improves zero-shot classification accuracy on ImageNet for SLIP models pre-trained on CC3M, CC12M, and YFCC15M datasets by 3.05%, 4.47%, and 10.1% , respectively. In addition, on fine-grained classification datasets, HELIP improves the zero-shot performance of CLIP and SLIP by an average of 8.4% and 18.6%, and their linear probe performance by an average of 9.5% and 3.0%. The code is publicly available at: https://github.com/haonan3/HELIP-NACCL-2025.git.
Related papers
- Data-Efficient Contrastive Language-Image Pretraining: Prioritizing Data Quality over Quantity [11.414069074535007]
Contrastive Language-Image Pre-training on large-scale image-caption datasets learns representations that can achieve remarkable zero-shot generalization.
Small subsets of training data that provably generalize the best has remained an open question.
We show that subsets that closely preserve the cross-covariance of the images and captions of the full data provably achieve a superior generalization performance.
arXiv Detail & Related papers (2024-03-18T21:32:58Z) - A Hard-to-Beat Baseline for Training-free CLIP-based Adaptation [121.0693322732454]
Contrastive Language-Image Pretraining (CLIP) has gained popularity for its remarkable zero-shot capacity.
Recent research has focused on developing efficient fine-tuning methods to enhance CLIP's performance in downstream tasks.
We revisit a classical algorithm, Gaussian Discriminant Analysis (GDA), and apply it to the downstream classification of CLIP.
arXiv Detail & Related papers (2024-02-06T15:45:27Z) - Effective pruning of web-scale datasets based on complexity of concept
clusters [48.125618324485195]
We present a method for pruning large-scale multimodal datasets for training CLIP-style models on ImageNet.
We find that training on a smaller set of high-quality data can lead to higher performance with significantly lower training costs.
We achieve a new state-of-the-art Imagehttps://info.arxiv.org/help/prep#commentsNet zero-shot accuracy and a competitive average zero-shot accuracy on 38 evaluation tasks.
arXiv Detail & Related papers (2024-01-09T14:32:24Z) - VeCLIP: Improving CLIP Training via Visual-enriched Captions [63.547204530720705]
This study introduces a scalable pipeline for noisy caption rewriting.
We emphasize the incorporation of visual concepts into captions, termed as Visual-enriched Captions (VeCap)
We showcase the adaptation of this method for training CLIP on large-scale web-crawled datasets, termed VeCLIP.
arXiv Detail & Related papers (2023-10-11T17:49:13Z) - Demystifying CLIP Data [86.34045746910114]
Contrastive Language-Image Pre-training (CLIP) has advanced research and applications in computer vision.
We introduce Metadata-Curated Language-Image Pre-training (MetaCLIP)
MetaCLIP takes a raw data pool and metadata (derived from CLIP's concepts) and yields a balanced subset over the metadata distribution.
arXiv Detail & Related papers (2023-09-28T17:59:56Z) - Preventing Zero-Shot Transfer Degradation in Continual Learning of
Vision-Language Models [13.340759455910721]
We propose a novel method to prevent zero-shot transfer degradation in the continual learning of vision-language models.
Our method outperforms other methods in the traditional class-incremental learning setting.
arXiv Detail & Related papers (2023-03-12T10:28:07Z) - Tip-Adapter: Training-free Adaption of CLIP for Few-shot Classification [58.06983806317233]
Contrastive Vision-Language Pre-training, known as CLIP, has provided a new paradigm for learning visual representations using large-scale image-text pairs.
To enhance CLIP's adaption capability, existing methods proposed to fine-tune additional learnable modules.
We propose a training-free adaption method for CLIP to conduct few-shot classification, termed as Tip-Adapter.
arXiv Detail & Related papers (2022-07-19T19:12:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.