Towards Building the Federated GPT: Federated Instruction Tuning
- URL: http://arxiv.org/abs/2305.05644v2
- Date: Mon, 29 Jan 2024 17:13:04 GMT
- Title: Towards Building the Federated GPT: Federated Instruction Tuning
- Authors: Jianyi Zhang, Saeed Vahidian, Martin Kuo, Chunyuan Li, Ruiyi Zhang,
Tong Yu, Yufan Zhou, Guoyin Wang, Yiran Chen
- Abstract summary: This paper introduces Federated Instruction Tuning (FedIT) as the learning framework for the instruction tuning of large language models (LLMs)
We demonstrate that by exploiting the heterogeneous and diverse sets of instructions on the client's end with FedIT, we improved the performance of LLMs compared to centralized training with only limited local instructions.
- Score: 66.7900343035733
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While "instruction-tuned" generative large language models (LLMs) have
demonstrated an impressive ability to generalize to new tasks, the training
phases heavily rely on large amounts of diverse and high-quality instruction
data (such as ChatGPT and GPT-4). Unfortunately, acquiring high-quality data,
especially when it comes to human-written data, can pose significant challenges
both in terms of cost and accessibility. Moreover, concerns related to privacy
can further limit access to such data, making the process of obtaining it a
complex and nuanced undertaking. Consequently, this hinders the generality of
the tuned models and may restrict their effectiveness in certain contexts. To
tackle this issue, our study introduces a new approach called Federated
Instruction Tuning (FedIT), which leverages federated learning (FL) as the
learning framework for the instruction tuning of LLMs. This marks the first
exploration of FL-based instruction tuning for LLMs. This is especially
important since text data is predominantly generated by end users. Therefore,
it is imperative to design and adapt FL approaches to effectively leverage
these users' diverse instructions stored on local devices, while preserving
privacy and ensuring data security. In the current paper, by conducting widely
used GPT-4 auto-evaluation, we demonstrate that by exploiting the heterogeneous
and diverse sets of instructions on the client's end with the proposed
framework FedIT, we improved the performance of LLMs compared to centralized
training with only limited local instructions. Further, in this paper, we
developed a Github repository named Shepherd. This repository offers a
foundational framework for exploring federated fine-tuning of LLMs using
heterogeneous instructions across diverse categories.
Related papers
- Data Quality Control in Federated Instruction-tuning of Large Language Models [43.29678396558287]
We propose a new framework of federated instruction tuning of large language models (LLMs) with data quality control (FedDQC)
Our approach introduces an efficient metric to assess each client's instruction-response alignment (IRA), identifying potentially noisy data through single-shot inference.
We conduct extensive experiments on 4 synthetic and a real-world dataset, and compare our method with baselines adapted from centralized setting.
arXiv Detail & Related papers (2024-10-15T12:14:57Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - OpenFedLLM: Training Large Language Models on Decentralized Private Data
via Federated Learning [44.200613313936024]
Large language models (LLMs) have demonstrated tremendous success across various fields.
In this paper, we offer a potential next step for contemporary LLM training on the underutilized distributed private data via federated learning (FL)
We build a concise, integrated, and research-friendly framework/codebase, named OpenFedLLM.
It covers federated instruction tuning for enhancing instruction-following capability, federated value alignment for aligning with human values, and 7 representative FL algorithms.
arXiv Detail & Related papers (2024-02-10T13:50:11Z) - InFoBench: Evaluating Instruction Following Ability in Large Language
Models [57.27152890085759]
Decomposed Requirements Following Ratio (DRFR) is a new metric for evaluating Large Language Models' (LLMs) ability to follow instructions.
We present InFoBench, a benchmark comprising 500 diverse instructions and 2,250 decomposed questions across multiple constraint categories.
arXiv Detail & Related papers (2024-01-07T23:01:56Z) - Unlocking the Potential of Prompt-Tuning in Bridging Generalized and
Personalized Federated Learning [49.72857433721424]
Vision Transformers (ViT) and Visual Prompt Tuning (VPT) achieve state-of-the-art performance with improved efficiency in various computer vision tasks.
We present a novel algorithm, SGPT, that integrates Generalized FL (GFL) and Personalized FL (PFL) approaches by employing a unique combination of both shared and group-specific prompts.
arXiv Detail & Related papers (2023-10-27T17:22:09Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
This paper first discusses these challenges of federated fine-tuning LLMs, and introduces our package FS-LLM as a main contribution.
We provide comprehensive federated parameter-efficient fine-tuning algorithm implementations and versatile programming interfaces for future extension in FL scenarios.
We conduct extensive experiments to validate the effectiveness of FS-LLM and benchmark advanced LLMs with state-of-the-art parameter-efficient fine-tuning algorithms in FL settings.
arXiv Detail & Related papers (2023-09-01T09:40:36Z) - Large Language Models as Data Preprocessors [9.99065004972981]
Large Language Models (LLMs) have marked a significant advancement in artificial intelligence.
This study explores their potential in data preprocessing, a critical stage in data mining and analytics applications.
We propose an LLM-based framework for data preprocessing, which integrates cutting-edge prompt engineering techniques.
arXiv Detail & Related papers (2023-08-30T23:28:43Z) - Collaborating Heterogeneous Natural Language Processing Tasks via
Federated Learning [55.99444047920231]
The proposed ATC framework achieves significant improvements compared with various baseline methods.
We conduct extensive experiments on six widely-used datasets covering both Natural Language Understanding (NLU) and Natural Language Generation (NLG) tasks.
arXiv Detail & Related papers (2022-12-12T09:27:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.