Learning Signed Hyper Surfaces for Oriented Point Cloud Normal Estimation
- URL: http://arxiv.org/abs/2305.05873v2
- Date: Tue, 30 Jul 2024 07:21:51 GMT
- Title: Learning Signed Hyper Surfaces for Oriented Point Cloud Normal Estimation
- Authors: Qing Li, Huifang Feng, Kanle Shi, Yue Gao, Yi Fang, Yu-Shen Liu, Zhizhong Han,
- Abstract summary: We propose a novel method called SHS-Net for oriented normal estimation of point clouds by learning signed hyper surfaces.
The signed hyper surfaces are implicitly learned in a high-dimensional feature space where the local and global information is aggregated.
An attention-weighted normal prediction module is proposed as a decoder, which takes the local and global latent codes as input to predict oriented normals.
- Score: 53.19926259132379
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We propose a novel method called SHS-Net for oriented normal estimation of point clouds by learning signed hyper surfaces, which can accurately predict normals with global consistent orientation from various point clouds. Almost all existing methods estimate oriented normals through a two-stage pipeline, i.e., unoriented normal estimation and normal orientation, and each step is implemented by a separate algorithm. However, previous methods are sensitive to parameter settings, resulting in poor results from point clouds with noise, density variations and complex geometries. In this work, we introduce signed hyper surfaces (SHS), which are parameterized by multi-layer perceptron (MLP) layers, to learn to estimate oriented normals from point clouds in an end-to-end manner. The signed hyper surfaces are implicitly learned in a high-dimensional feature space where the local and global information is aggregated. Specifically, we introduce a patch encoding module and a shape encoding module to encode a 3D point cloud into a local latent code and a global latent code, respectively. Then, an attention-weighted normal prediction module is proposed as a decoder, which takes the local and global latent codes as input to predict oriented normals. Experimental results show that our SHS-Net outperforms the state-of-the-art methods in both unoriented and oriented normal estimation on the widely used benchmarks.
Related papers
- OCMG-Net: Neural Oriented Normal Refinement for Unstructured Point Clouds [18.234146052486054]
We present a robust refinement method for estimating oriented normals from unstructured point clouds.
Our framework incorporates sign orientation and data augmentation in the feature space to refine the initial oriented normals.
To address the issue of noise-caused direction inconsistency existing in previous approaches, we introduce a new metric called the Chamfer Normal Distance.
arXiv Detail & Related papers (2024-09-02T09:30:02Z) - CMG-Net: Robust Normal Estimation for Point Clouds via Chamfer Normal
Distance and Multi-scale Geometry [23.86650228464599]
This work presents an accurate and robust method for estimating normals from point clouds.
We first propose a new metric termed Chamfer Normal Distance to address this issue.
We devise an innovative architecture that encompasses Multi-scale Local Feature Aggregation and Hierarchical Geometric Information Fusion.
arXiv Detail & Related papers (2023-12-14T17:23:16Z) - NeuralGF: Unsupervised Point Normal Estimation by Learning Neural
Gradient Function [55.86697795177619]
Normal estimation for 3D point clouds is a fundamental task in 3D geometry processing.
We introduce a new paradigm for learning neural gradient functions, which encourages the neural network to fit the input point clouds.
Our excellent results on widely used benchmarks demonstrate that our method can learn more accurate normals for both unoriented and oriented normal estimation tasks.
arXiv Detail & Related papers (2023-11-01T09:25:29Z) - Neural Gradient Learning and Optimization for Oriented Point Normal
Estimation [53.611206368815125]
We propose a deep learning approach to learn gradient vectors with consistent orientation from 3D point clouds for normal estimation.
We learn an angular distance field based on local plane geometry to refine the coarse gradient vectors.
Our method efficiently conducts global gradient approximation while achieving better accuracy and ability generalization of local feature description.
arXiv Detail & Related papers (2023-09-17T08:35:11Z) - HSurf-Net: Normal Estimation for 3D Point Clouds by Learning Hyper
Surfaces [54.77683371400133]
We propose a novel normal estimation method called HSurf-Net, which can accurately predict normals from point clouds with noise and density variations.
Experimental results show that our HSurf-Net achieves the state-of-the-art performance on the synthetic shape dataset.
arXiv Detail & Related papers (2022-10-13T16:39:53Z) - Deep Point Cloud Normal Estimation via Triplet Learning [12.271669779096076]
We propose a novel normal estimation method for point clouds.
It consists of two phases: (a) feature encoding which learns representations of local patches, and (b) normal estimation that takes the learned representation as input and regresses the normal vector.
Our method preserves sharp features and achieves better normal estimation results on CAD-like shapes.
arXiv Detail & Related papers (2021-10-20T11:16:00Z) - PU-Flow: a Point Cloud Upsampling Networkwith Normalizing Flows [58.96306192736593]
We present PU-Flow, which incorporates normalizing flows and feature techniques to produce dense points uniformly distributed on the underlying surface.
Specifically, we formulate the upsampling process as point in a latent space, where the weights are adaptively learned from local geometric context.
We show that our method outperforms state-of-the-art deep learning-based approaches in terms of reconstruction quality, proximity-to-surface accuracy, and computation efficiency.
arXiv Detail & Related papers (2021-07-13T07:45:48Z) - Orienting Point Clouds with Dipole Propagation [105.4057234622909]
We introduce a novel approach for establishing a globally consistent normal orientation for point clouds.
In the local phase, we train a neural network to learn a coherent normal direction per patch.
In the global phase, we propagate the orientation across all coherent patches using a dipole propagation.
arXiv Detail & Related papers (2021-05-04T16:25:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.