Neural Fine-Gray: Monotonic neural networks for competing risks
- URL: http://arxiv.org/abs/2305.06703v1
- Date: Thu, 11 May 2023 10:27:59 GMT
- Title: Neural Fine-Gray: Monotonic neural networks for competing risks
- Authors: Vincent Jeanselme, Chang Ho Yoon, Brian Tom, Jessica Barrett
- Abstract summary: Time-to-event modelling, known as survival analysis, differs from standard regression as it addresses censoring in patients who do not experience the event of interest.
This paper leverages constrained monotonic neural networks to model each competing survival distribution.
The effectiveness of the solution is demonstrated on one synthetic and three medical datasets.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time-to-event modelling, known as survival analysis, differs from standard
regression as it addresses censoring in patients who do not experience the
event of interest. Despite competitive performances in tackling this problem,
machine learning methods often ignore other competing risks that preclude the
event of interest. This practice biases the survival estimation. Extensions to
address this challenge often rely on parametric assumptions or numerical
estimations leading to sub-optimal survival approximations. This paper
leverages constrained monotonic neural networks to model each competing
survival distribution. This modelling choice ensures the exact likelihood
maximisation at a reduced computational cost by using automatic
differentiation. The effectiveness of the solution is demonstrated on one
synthetic and three medical datasets. Finally, we discuss the implications of
considering competing risks when developing risk scores for medical practice.
Related papers
- Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
We present a geometry-constrained probabilistic modeling treatment to resolve the identified issues.
We incorporate a suite of critical geometric properties to impose proper constraints on the layout of constructed embedding space.
A spectral graph-theoretic method is devised to estimate the number of potential novel classes.
arXiv Detail & Related papers (2024-03-02T00:56:05Z) - ICTSurF: Implicit Continuous-Time Survival Functions with Neural Networks [0.0]
This research introduces the Implicit Continuous-Time Survival Function (ICTSurF)
ICTSurF is built on a continuous-time survival model and constructs survival distribution through implicit representation.
Our method is capable of accepting inputs in continuous-time space and producing survival probabilities in continuous-time space, independent of neural network architecture.
arXiv Detail & Related papers (2023-12-10T08:29:00Z) - Interpretable Survival Analysis for Heart Failure Risk Prediction [50.64739292687567]
We propose a novel survival analysis pipeline that is both interpretable and competitive with state-of-the-art survival models.
Our pipeline achieves state-of-the-art performance and provides interesting and novel insights about risk factors for heart failure.
arXiv Detail & Related papers (2023-10-24T02:56:05Z) - Continuous-Time Modeling of Counterfactual Outcomes Using Neural
Controlled Differential Equations [84.42837346400151]
Estimating counterfactual outcomes over time has the potential to unlock personalized healthcare.
Existing causal inference approaches consider regular, discrete-time intervals between observations and treatment decisions.
We propose a controllable simulation environment based on a model of tumor growth for a range of scenarios.
arXiv Detail & Related papers (2022-06-16T17:15:15Z) - Practical Challenges in Differentially-Private Federated Survival
Analysis of Medical Data [57.19441629270029]
In this paper, we take advantage of the inherent properties of neural networks to federate the process of training of survival analysis models.
In the realistic setting of small medical datasets and only a few data centers, this noise makes it harder for the models to converge.
We propose DPFed-post which adds a post-processing stage to the private federated learning scheme.
arXiv Detail & Related papers (2022-02-08T10:03:24Z) - A New Approach for Interpretability and Reliability in Clinical Risk
Prediction: Acute Coronary Syndrome Scenario [0.33927193323747895]
We intend to create a new risk assessment methodology that combines the best characteristics of both risk score and machine learning models.
The proposed approach achieved testing results identical to the standard LR, but offers superior interpretability and personalization.
The reliability estimation of individual predictions presented a great correlation with the misclassifications rate.
arXiv Detail & Related papers (2021-10-15T19:33:46Z) - WRSE -- a non-parametric weighted-resolution ensemble for predicting
individual survival distributions in the ICU [0.251657752676152]
Dynamic assessment of mortality risk in the intensive care unit (ICU) can be used to stratify patients, inform about treatment effectiveness or serve as part of an early-warning system.
We show competitive results with state-of-the-art probabilistic models, while greatly reducing training time by factors of 2-9x.
arXiv Detail & Related papers (2020-11-02T10:13:59Z) - DeepHazard: neural network for time-varying risks [0.6091702876917281]
We propose a new flexible method for survival prediction: DeepHazard, a neural network for time-varying risks.
Our approach is tailored for a wide range of continuous hazards forms, with the only restriction of being additive in time.
Numerical examples illustrate that our approach outperforms existing state-of-the-art methodology in terms of predictive capability evaluated through the C-index metric.
arXiv Detail & Related papers (2020-07-26T21:01:49Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
Survival data are frequently encountered across diverse medical applications, i.e., drug development, risk profiling, and clinical trials.
We propose a theoretically grounded unified framework for counterfactual inference applicable to survival outcomes.
arXiv Detail & Related papers (2020-06-14T01:15:00Z) - A General Framework for Survival Analysis and Multi-State Modelling [70.31153478610229]
We use neural ordinary differential equations as a flexible and general method for estimating multi-state survival models.
We show that our model exhibits state-of-the-art performance on popular survival data sets and demonstrate its efficacy in a multi-state setting.
arXiv Detail & Related papers (2020-06-08T19:24:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.