Musketeer: Joint Training for Multi-task Vision Language Model with Task Explanation Prompts
- URL: http://arxiv.org/abs/2305.07019v2
- Date: Thu, 14 Mar 2024 20:30:52 GMT
- Title: Musketeer: Joint Training for Multi-task Vision Language Model with Task Explanation Prompts
- Authors: Zhaoyang Zhang, Yantao Shen, Kunyu Shi, Zhaowei Cai, Jun Fang, Siqi Deng, Hao Yang, Davide Modolo, Zhuowen Tu, Stefano Soatto,
- Abstract summary: We present a vision-language model whose parameters are jointly trained on all tasks and fully shared among multiple heterogeneous tasks.
With a single model, Musketeer achieves results comparable to or better than strong baselines trained on single tasks, almost uniformly across multiple tasks.
- Score: 75.75548749888029
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a vision-language model whose parameters are jointly trained on all tasks and fully shared among multiple heterogeneous tasks which may interfere with each other, resulting in a single model which we named Musketeer. The integration of knowledge across heterogeneous tasks is enabled by a novel feature called Task Explanation Prompt (TEP). With rich and structured information such as task input/output format, TEP reduces interference among tasks, allowing the model to focus on their shared structure. With a single model, Musketeer achieves results comparable to or better than strong baselines trained on single tasks, almost uniformly across multiple tasks.
Related papers
- LIMT: Language-Informed Multi-Task Visual World Models [6.128332310539627]
Multi-task reinforcement learning can be very challenging due to the increased sample complexity and the potentially conflicting task objectives.
We propose a method for learning multi-task visual world models, leveraging pre-trained language models to extract semantically meaningful task representations.
Our results highlight the benefits of using language-driven task representations for world models and a clear advantage of model-based multi-task learning over the more common model-free paradigm.
arXiv Detail & Related papers (2024-07-18T12:40:58Z) - Multitask Multimodal Prompted Training for Interactive Embodied Task
Completion [48.69347134411864]
Embodied MultiModal Agent (EMMA) is a unified encoder-decoder model that reasons over images and trajectories.
By unifying all tasks as text generation, EMMA learns a language of actions which facilitates transfer across tasks.
arXiv Detail & Related papers (2023-11-07T15:27:52Z) - An Efficient General-Purpose Modular Vision Model via Multi-Task
Heterogeneous Training [79.78201886156513]
We present a model that can perform multiple vision tasks and can be adapted to other downstream tasks efficiently.
Our approach achieves comparable results to single-task state-of-the-art models and demonstrates strong generalization on downstream tasks.
arXiv Detail & Related papers (2023-06-29T17:59:57Z) - Mod-Squad: Designing Mixture of Experts As Modular Multi-Task Learners [74.92558307689265]
We propose Mod-Squad, a new model that is Modularized into groups of experts (a 'Squad')
We optimize this matching process during the training of a single model.
Experiments on the Taskonomy dataset with 13 vision tasks and the PASCAL-Context dataset with 5 vision tasks show the superiority of our approach.
arXiv Detail & Related papers (2022-12-15T18:59:52Z) - OFASys: A Multi-Modal Multi-Task Learning System for Building Generalist
Models [72.8156832931841]
Generalist models are capable of performing diverse multi-modal tasks in a task-agnostic way within a single model.
We release a generalist model learning system, OFASys, built on top of a declarative task interface named multi-modal instruction.
arXiv Detail & Related papers (2022-12-08T17:07:09Z) - Sparsely Activated Mixture-of-Experts are Robust Multi-Task Learners [67.5865966762559]
We study whether sparsely activated Mixture-of-Experts (MoE) improve multi-task learning.
We devise task-aware gating functions to route examples from different tasks to specialized experts.
This results in a sparsely activated multi-task model with a large number of parameters, but with the same computational cost as that of a dense model.
arXiv Detail & Related papers (2022-04-16T00:56:12Z) - Uni-Perceiver: Pre-training Unified Architecture for Generic Perception
for Zero-shot and Few-shot Tasks [73.63892022944198]
We present a generic perception architecture named Uni-Perceiver.
It processes a variety of modalities and tasks with unified modeling and shared parameters.
Results show that our pre-trained model without any tuning can achieve reasonable performance even on novel tasks.
arXiv Detail & Related papers (2021-12-02T18:59:50Z) - Exploring Multitask Learning for Low-Resource AbstractiveSummarization [0.5801044612920816]
We show that for many task combinations, a model trained in a multitask setting outperforms a model trained only for abstractive summarization.
We also find that certain tasks consistently benefit abstractive summarization, not only when combined with other tasks but also when using different architectures and training corpora.
arXiv Detail & Related papers (2021-09-17T14:23:58Z) - Latent Group Structured Multi-task Learning [2.827177139912107]
In multi-task learning (MTL), we improve the performance of key machine learning algorithms by training various tasks jointly.
We present our group structured latent-space multi-task learning model, which encourages group structured tasks defined by prior information.
Experiments are conducted on both synthetic and real-world datasets, showing competitive performance over single-task learning.
arXiv Detail & Related papers (2020-11-24T05:38:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.