Two-in-One: A Model Hijacking Attack Against Text Generation Models
- URL: http://arxiv.org/abs/2305.07406v1
- Date: Fri, 12 May 2023 12:13:27 GMT
- Title: Two-in-One: A Model Hijacking Attack Against Text Generation Models
- Authors: Wai Man Si and Michael Backes and Yang Zhang and Ahmed Salem
- Abstract summary: We propose a new model hijacking attack, Ditto, that can hijack different text classification tasks into multiple generation ones.
Our results show that by using Ditto, an adversary can successfully hijack text generation models without jeopardizing their utility.
- Score: 19.826236952700256
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning has progressed significantly in various applications ranging
from face recognition to text generation. However, its success has been
accompanied by different attacks. Recently a new attack has been proposed which
raises both accountability and parasitic computing risks, namely the model
hijacking attack. Nevertheless, this attack has only focused on image
classification tasks. In this work, we broaden the scope of this attack to
include text generation and classification models, hence showing its broader
applicability. More concretely, we propose a new model hijacking attack, Ditto,
that can hijack different text classification tasks into multiple generation
ones, e.g., language translation, text summarization, and language modeling. We
use a range of text benchmark datasets such as SST-2, TweetEval, AGnews, QNLI,
and IMDB to evaluate the performance of our attacks. Our results show that by
using Ditto, an adversary can successfully hijack text generation models
without jeopardizing their utility.
Related papers
- A Realistic Threat Model for Large Language Model Jailbreaks [87.64278063236847]
In this work, we propose a unified threat model for the principled comparison of jailbreak attacks.
Our threat model combines constraints in perplexity, measuring how far a jailbreak deviates from natural text.
We adapt popular attacks to this new, realistic threat model, with which we, for the first time, benchmark these attacks on equal footing.
arXiv Detail & Related papers (2024-10-21T17:27:01Z) - Forging the Forger: An Attempt to Improve Authorship Verification via Data Augmentation [52.72682366640554]
Authorship Verification (AV) is a text classification task concerned with inferring whether a candidate text has been written by one specific author or by someone else.
It has been shown that many AV systems are vulnerable to adversarial attacks, where a malicious author actively tries to fool the classifier by either concealing their writing style, or by imitating the style of another author.
arXiv Detail & Related papers (2024-03-17T16:36:26Z) - Arabic Synonym BERT-based Adversarial Examples for Text Classification [0.0]
This paper introduces the first word-level study of adversarial attacks in Arabic.
We assess the robustness of the state-of-the-art text classification models to adversarial attacks in Arabic.
We study the transferability of these newly produced Arabic adversarial examples to various models and investigate the effectiveness of defense mechanisms.
arXiv Detail & Related papers (2024-02-05T19:39:07Z) - Vision-LLMs Can Fool Themselves with Self-Generated Typographic Attacks [62.34019142949628]
Typographic Attacks, which involve pasting misleading text onto an image, were noted to harm the performance of Vision-Language Models like CLIP.
We introduce two novel and more effective textitSelf-Generated attacks which prompt the LVLM to generate an attack against itself.
Using our benchmark, we uncover that Self-Generated attacks pose a significant threat, reducing LVLM(s) classification performance by up to 33%.
arXiv Detail & Related papers (2024-02-01T14:41:20Z) - BAGM: A Backdoor Attack for Manipulating Text-to-Image Generative Models [54.19289900203071]
The rise in popularity of text-to-image generative artificial intelligence has attracted widespread public interest.
We demonstrate that this technology can be attacked to generate content that subtly manipulates its users.
We propose a Backdoor Attack on text-to-image Generative Models (BAGM)
Our attack is the first to target three popular text-to-image generative models across three stages of the generative process.
arXiv Detail & Related papers (2023-07-31T08:34:24Z) - Adversarial GLUE: A Multi-Task Benchmark for Robustness Evaluation of
Language Models [86.02610674750345]
Adversarial GLUE (AdvGLUE) is a new multi-task benchmark to explore and evaluate the vulnerabilities of modern large-scale language models under various types of adversarial attacks.
We apply 14 adversarial attack methods to GLUE tasks to construct AdvGLUE, which is further validated by humans for reliable annotations.
All the language models and robust training methods we tested perform poorly on AdvGLUE, with scores lagging far behind the benign accuracy.
arXiv Detail & Related papers (2021-11-04T12:59:55Z) - Multi-granularity Textual Adversarial Attack with Behavior Cloning [4.727534308759158]
We propose MAYA, a Multi-grAnularitY Attack model to generate high-quality adversarial samples with fewer queries to victim models.
We conduct comprehensive experiments to evaluate our attack models by attacking BiLSTM, BERT and RoBERTa in two different black-box attack settings and three benchmark datasets.
arXiv Detail & Related papers (2021-09-09T15:46:45Z) - Explain2Attack: Text Adversarial Attacks via Cross-Domain
Interpretability [18.92690624514601]
Research has shown that down-stream models can be easily fooled with adversarial inputs that look like the training data, but slightly perturbed, in a way imperceptible to humans.
In this paper, we propose Explain2Attack, a black-box adversarial attack on text classification task.
We show that our framework either achieves or out-performs attack rates of the state-of-the-art models, yet with lower queries cost and higher efficiency.
arXiv Detail & Related papers (2020-10-14T04:56:41Z) - Learning to Attack: Towards Textual Adversarial Attacking in Real-world
Situations [81.82518920087175]
Adversarial attacking aims to fool deep neural networks with adversarial examples.
We propose a reinforcement learning based attack model, which can learn from attack history and launch attacks more efficiently.
arXiv Detail & Related papers (2020-09-19T09:12:24Z) - Natural Backdoor Attack on Text Data [15.35163515187413]
In this paper, we propose the textitbackdoor attacks on NLP models.
We exploit the various attack strategies to generate trigger on text data and investigate different types of triggers based on modification scope, human recognition, and special cases.
The results show the excellent performance of with 100% backdoor attacks success rate and sacrificing of 0.83% on the text classification task.
arXiv Detail & Related papers (2020-06-29T16:40:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.