Distributed Gradient Descent for Functional Learning
- URL: http://arxiv.org/abs/2305.07408v3
- Date: Sun, 21 Jul 2024 10:18:39 GMT
- Title: Distributed Gradient Descent for Functional Learning
- Authors: Zhan Yu, Jun Fan, Zhongjie Shi, Ding-Xuan Zhou,
- Abstract summary: We propose a novel distributed gradient descent functional learning (DGDFL) algorithm to tackle functional data across numerous local machines (processors) in the framework of reproducing kernel Hilbert space.
Under mild conditions, confidence-based optimal learning rates of DGDFL are obtained without the saturation boundary on the regularity index suffered in previous works in functional regression.
- Score: 9.81463654618448
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, different types of distributed and parallel learning schemes have received increasing attention for their strong advantages in handling large-scale data information. In the information era, to face the big data challenges {that} stem from functional data analysis very recently, we propose a novel distributed gradient descent functional learning (DGDFL) algorithm to tackle functional data across numerous local machines (processors) in the framework of reproducing kernel Hilbert space. Based on integral operator approaches, we provide the first theoretical understanding of the DGDFL algorithm in many different aspects of the literature. On the way of understanding DGDFL, firstly, a data-based gradient descent functional learning (GDFL) algorithm associated with a single-machine model is proposed and comprehensively studied. Under mild conditions, confidence-based optimal learning rates of DGDFL are obtained without the saturation boundary on the regularity index suffered in previous works in functional regression. We further provide a semi-supervised DGDFL approach to weaken the restriction on the maximal number of local machines to ensure optimal rates. To our best knowledge, the DGDFL provides the first divide-and-conquer iterative training approach to functional learning based on data samples of intrinsically infinite-dimensional random functions (functional covariates) and enriches the methodologies for functional data analysis.
Related papers
- Tackling Computational Heterogeneity in FL: A Few Theoretical Insights [68.8204255655161]
We introduce and analyse a novel aggregation framework that allows for formalizing and tackling computational heterogeneous data.
Proposed aggregation algorithms are extensively analyzed from a theoretical, and an experimental prospective.
arXiv Detail & Related papers (2023-07-12T16:28:21Z) - Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
Low-Rank Markov Decision Processes offer a simple, yet expressive framework for RL with function approximation.
Existing algorithms are either (1) computationally intractable, or (2) reliant upon restrictive statistical assumptions.
We propose the first provably sample-efficient algorithm for exploration in Low-Rank MDPs.
arXiv Detail & Related papers (2023-07-08T15:41:48Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
Existing reinforcement learning algorithms suffer from computational intractability, strong statistical assumptions, and suboptimal sample complexity.
We provide the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level.
Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics.
arXiv Detail & Related papers (2023-04-12T14:51:47Z) - Improving Few-Shot Generalization by Exploring and Exploiting Auxiliary
Data [100.33096338195723]
We focus on Few-shot Learning with Auxiliary Data (FLAD)
FLAD assumes access to auxiliary data during few-shot learning in hopes of improving generalization.
We propose two algorithms -- EXP3-FLAD and UCB1-FLAD -- and compare them with prior FLAD methods that either explore or exploit.
arXiv Detail & Related papers (2023-02-01T18:59:36Z) - Faster Adaptive Federated Learning [84.38913517122619]
Federated learning has attracted increasing attention with the emergence of distributed data.
In this paper, we propose an efficient adaptive algorithm (i.e., FAFED) based on momentum-based variance reduced technique in cross-silo FL.
arXiv Detail & Related papers (2022-12-02T05:07:50Z) - Offline Reinforcement Learning with Differentiable Function
Approximation is Provably Efficient [65.08966446962845]
offline reinforcement learning, which aims at optimizing decision-making strategies with historical data, has been extensively applied in real-life applications.
We take a step by considering offline reinforcement learning with differentiable function class approximation (DFA)
Most importantly, we show offline differentiable function approximation is provably efficient by analyzing the pessimistic fitted Q-learning algorithm.
arXiv Detail & Related papers (2022-10-03T07:59:42Z) - On Hypothesis Transfer Learning of Functional Linear Models [8.557392136621894]
We study the transfer learning (TL) for the functional linear regression (FLR) under the Reproducing Kernel Space (RKHS) framework.
We measure the similarity across tasks using RKHS distance, allowing the type of information being transferred tied to the properties of the imposed RKHS.
Two algorithms are proposed: one conducts the transfer when positive sources are known, while the other leverages aggregation to achieve robust transfer without prior information about the sources.
arXiv Detail & Related papers (2022-06-09T04:50:16Z) - Deep Neural Network Classifier for Multi-dimensional Functional Data [4.340040784481499]
We propose a new approach, called as functional deep neural network (FDNN), for classifying multi-dimensional functional data.
Specifically, a deep neural network is trained based on the principle components of the training data which shall be used to predict the class label of a future data function.
arXiv Detail & Related papers (2022-05-17T19:22:48Z) - Fast Reinforcement Learning with Incremental Gaussian Mixture Models [0.0]
An online and incremental algorithm capable of learning from a single pass through data, called Incremental Gaussian Mixture Network (IGMN), was employed as a sample-efficient function approximator for the joint state and Q-values space.
Results are analyzed to explain the properties of the obtained algorithm, and it is observed that the use of the IGMN function approximator brings some important advantages to reinforcement learning in relation to conventional neural networks trained by gradient descent methods.
arXiv Detail & Related papers (2020-11-02T03:18:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.