A Feasible Semi-quantum Private Comparison Based on Entanglement
Swapping of Bell States
- URL: http://arxiv.org/abs/2305.07467v2
- Date: Tue, 16 May 2023 11:48:19 GMT
- Title: A Feasible Semi-quantum Private Comparison Based on Entanglement
Swapping of Bell States
- Authors: Chong-Qiang Ye, Jian Li, Xiu-Bo Chen, Yanyan Hou
- Abstract summary: We propose a feasible semi-quantum private comparison protocol based on entanglement swapping of Bell states.
Security analysis shows that our protocol is resilient to both external and internal attacks.
Our proposed approach showcases the potential applications of entanglement swapping in the field of semi-quantum cryptography.
- Score: 5.548873288570182
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semi-quantum private comparison (SQPC) enables two classical users with
limited quantum capabilities to compare confidential information using a
semi-honest third party (TP) with full quantum power. However, entanglement
swapping, as an important property of quantum mechanics in previously proposed
SQPC protocols is usually neglected. In this paper, we propose a feasible SQPC
protocol based on the entanglement swapping of Bell states, where two classical
users do not require additional implementation of the semi-quantum key
distribution protocol to ensure the security of their private data. Security
analysis shows that our protocol is resilient to both external and internal
attacks. To verify the feasibility and correctness of the proposed SQPC
protocol, we design and simulate the corresponding quantum circuits using IBM
Qiskit. Finally, we compare and discuss the proposed protocol with previous
similar work. The results reveal that our protocol maintains high qubit
efficiency, even when entanglement swapping is employed. Consequently, our
proposed approach showcases the potential applications of entanglement swapping
in the field of semi-quantum cryptography.
Related papers
- Towards efficient and secure quantum-classical communication networks [47.27205216718476]
There are two primary approaches to achieving quantum-resistant security: quantum key distribution (QKD) and post-quantum cryptography (PQC)
We introduce the pros and cons of these protocols and explore how they can be combined to achieve a higher level of security and/or improved performance in key distribution.
We hope our discussion inspires further research into the design of hybrid cryptographic protocols for quantum-classical communication networks.
arXiv Detail & Related papers (2024-11-01T23:36:19Z) - Semiquantum private comparison via cavity QED [8.62421338326666]
We design the first semiquantum private comparison (SQPC) protocol which is realized via cavity quantum electrodynamics (QED)
With the help of a semi-honest third party (TP), the proposed protocol can compare the equality of private inputs from two semiquantum parties who only have limited quantum capabilities.
arXiv Detail & Related papers (2023-09-23T02:02:21Z) - Conference key agreement in a quantum network [67.410870290301]
Quantum conference key agreement (QCKA) allows multiple users to establish a secure key from a shared multi-partite entangled state.
In a quantum network, this protocol can be efficiently implemented using a single copy of a N-qubit Greenberger-Horne-Zeilinger (GHZ) state to distil a secure N-user conference key bit.
arXiv Detail & Related papers (2022-07-04T18:00:07Z) - Measure-resend semi-quantum private comparison without entanglement [0.0]
Our protocol allows two classical users to compare the equality of their private secrets under the help of a quantum third party.
The quantum TP is semi-honest in the sense that he is allowed to misbehave on his own but cannot conspire with either of users.
arXiv Detail & Related papers (2022-05-13T00:43:05Z) - Semiquantum private comparison based on Bell states without quantum measurements from the classical user [4.4053348026380235]
We propose a novel semiquantum private comparison protocol based on Bell states.
TP is assumed to be semi-honest in the sense that she may take all possible attacks to steal users' private inputs except conspiring with anyone.
Our protocol can take advantage over previous SQPC protocols based on Bell states in qubit efficiency.
arXiv Detail & Related papers (2022-05-10T14:32:53Z) - Improved Semi-Quantum Key Distribution with Two Almost-Classical Users [1.827510863075184]
We revisit a mediated semi-quantum key distribution protocol introduced by Massa et al.
We show how this protocol may be extended to improve its efficiency and also its noise tolerance.
We evaluate the protocol's performance in a variety of lossy and noisy channels.
arXiv Detail & Related papers (2022-03-20T14:41:14Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - Multi-party Semi-quantum Secret Sharing Protocol based on Measure-flip and Reflect Operations [1.3812010983144802]
Semi-quantum secret sharing (SQSS) protocols serve as fundamental frameworks in quantum secure multi-party computations.
This paper proposes a novel SQSS protocol based on multi-particle GHZ states.
arXiv Detail & Related papers (2021-09-03T08:52:17Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Secure Two-Party Quantum Computation Over Classical Channels [63.97763079214294]
We consider the setting where the two parties (a classical Alice and a quantum Bob) can communicate only via a classical channel.
We show that it is in general impossible to realize a two-party quantum functionality with black-box simulation in the case of malicious quantum adversaries.
We provide a compiler that takes as input a classical proof of quantum knowledge (PoQK) protocol for a QMA relation R and outputs a zero-knowledge PoQK for R that can be verified by classical parties.
arXiv Detail & Related papers (2020-10-15T17:55:31Z) - Security Limitations of Classical-Client Delegated Quantum Computing [54.28005879611532]
A client remotely prepares a quantum state using a classical channel.
Privacy loss incurred by employing $RSP_CC$ as a sub-module is unclear.
We show that a specific $RSP_CC$ protocol can replace the quantum channel at least in some contexts.
arXiv Detail & Related papers (2020-07-03T13:15:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.