Scalable Educational Question Generation with Pre-trained Language
Models
- URL: http://arxiv.org/abs/2305.07871v1
- Date: Sat, 13 May 2023 09:08:27 GMT
- Title: Scalable Educational Question Generation with Pre-trained Language
Models
- Authors: Sahan Bulathwela, Hamze Muse and Emine Yilmaz
- Abstract summary: We develop textitEduQG, a novel educational question generation model built by adapting a large language model.
Our experiments demonstrate that textitEduQG can produce superior educational questions by further pre-training and fine-tuning a pre-trained language model on the scientific text and science question data.
- Score: 17.701780209575777
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The automatic generation of educational questions will play a key role in
scaling online education, enabling self-assessment at scale when a global
population is manoeuvring their personalised learning journeys. We develop
\textit{EduQG}, a novel educational question generation model built by adapting
a large language model. Our extensive experiments demonstrate that
\textit{EduQG} can produce superior educational questions by further
pre-training and fine-tuning a pre-trained language model on the scientific
text and science question data.
Related papers
- Trustworthy Alignment of Retrieval-Augmented Large Language Models via Reinforcement Learning [84.94709351266557]
We focus on the trustworthiness of language models with respect to retrieval augmentation.
We deem that retrieval-augmented language models have the inherent capabilities of supplying response according to both contextual and parametric knowledge.
Inspired by aligning language models with human preference, we take the first step towards aligning retrieval-augmented language models to a status where it responds relying merely on the external evidence.
arXiv Detail & Related papers (2024-10-22T09:25:21Z) - Carpe Diem: On the Evaluation of World Knowledge in Lifelong Language Models [74.81091933317882]
We introduce EvolvingQA, a temporally evolving question-answering benchmark designed for training and evaluating LMs on an evolving Wikipedia database.
We uncover that existing continual learning baselines suffer from updating and removing outdated knowledge.
Our work aims to model the dynamic nature of real-world information, suggesting faithful evaluations of the evolution-adaptability of language models.
arXiv Detail & Related papers (2023-11-14T12:12:02Z) - Automating question generation from educational text [1.9325905076281444]
The use of question-based activities (QBAs) is wide-spread in education, forming an integral part of the learning and assessment process.
We design and evaluate an automated question generation tool for formative and summative assessment in schools.
arXiv Detail & Related papers (2023-09-26T15:18:44Z) - On the application of Large Language Models for language teaching and
assessment technology [18.735612275207853]
We look at the potential for incorporating large language models in AI-driven language teaching and assessment systems.
We find that larger language models offer improvements over previous models in text generation.
For automated grading and grammatical error correction, tasks whose progress is checked on well-known benchmarks, early investigations indicate that large language models on their own do not improve on state-of-the-art results.
arXiv Detail & Related papers (2023-07-17T11:12:56Z) - SINC: Self-Supervised In-Context Learning for Vision-Language Tasks [64.44336003123102]
We propose a framework to enable in-context learning in large language models.
A meta-model can learn on self-supervised prompts consisting of tailored demonstrations.
Experiments show that SINC outperforms gradient-based methods in various vision-language tasks.
arXiv Detail & Related papers (2023-07-15T08:33:08Z) - Adaptive and Personalized Exercise Generation for Online Language
Learning [39.28263461783446]
We study a novel task of adaptive and personalized exercise generation for online language learning.
We combine a knowledge tracing model that estimates each student's evolving knowledge states from their learning history.
We train and evaluate our model on real-world learner interaction data from Duolingo.
arXiv Detail & Related papers (2023-06-04T20:18:40Z) - A Survey of Large Language Models [81.06947636926638]
Language modeling has been widely studied for language understanding and generation in the past two decades.
Recently, pre-trained language models (PLMs) have been proposed by pre-training Transformer models over large-scale corpora.
To discriminate the difference in parameter scale, the research community has coined the term large language models (LLM) for the PLMs of significant size.
arXiv Detail & Related papers (2023-03-31T17:28:46Z) - Pre-Training With Scientific Text Improves Educational Question
Generation [17.701780209575777]
We develop EduQG, a novel educational question generation model built by adapting a large language model.
Our initial experiments demonstrate that EduQG can produce superior educational questions by pre-training on scientific text.
arXiv Detail & Related papers (2022-12-07T17:17:58Z) - Educational Question Generation of Children Storybooks via Question Type Distribution Learning and Event-Centric Summarization [67.1483219601714]
We propose a novel question generation method that first learns the question type distribution of an input story paragraph.
We finetune a pre-trained transformer-based sequence-to-sequence model using silver samples composed by educational question-answer pairs.
Our work indicates the necessity of decomposing question type distribution learning and event-centric summary generation for educational question generation.
arXiv Detail & Related papers (2022-03-27T02:21:19Z) - Towards Zero-shot Language Modeling [90.80124496312274]
We construct a neural model that is inductively biased towards learning human languages.
We infer this distribution from a sample of typologically diverse training languages.
We harness additional language-specific side information as distant supervision for held-out languages.
arXiv Detail & Related papers (2021-08-06T23:49:18Z) - Question Generation for Adaptive Education [7.23389716633927]
We show how to fine-tune pre-trained language models for deep knowledge tracing (LM-KT)
This model accurately predicts the probability of a student answering a question correctly, and generalizes to questions not seen in training.
We then use LM-KT to specify the objective and data for training a model to generate questions conditioned on the student and target difficulty.
arXiv Detail & Related papers (2021-06-08T11:46:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.