Towards Understanding and Improving Knowledge Distillation for Neural Machine Translation
- URL: http://arxiv.org/abs/2305.08096v2
- Date: Wed, 17 Jul 2024 08:36:30 GMT
- Title: Towards Understanding and Improving Knowledge Distillation for Neural Machine Translation
- Authors: Songming Zhang, Yunlong Liang, Shuaibo Wang, Wenjuan Han, Jian Liu, Jinan Xu, Yufeng Chen,
- Abstract summary: We show that the knowledge comes from the top-1 predictions of teachers.
We propose a novel method named textbfTop-1 textbfInformation textbfEnhanced textbfKnowledge textbfDistillation (TIE-KD)
- Score: 59.31690622031927
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Knowledge distillation (KD) is a promising technique for model compression in neural machine translation. However, where the knowledge hides in KD is still not clear, which may hinder the development of KD. In this work, we first unravel this mystery from an empirical perspective and show that the knowledge comes from the top-1 predictions of teachers, which also helps us build a potential connection between word- and sequence-level KD. Further, we point out two inherent issues in vanilla word-level KD based on this finding. Firstly, the current objective of KD spreads its focus to whole distributions to learn the knowledge, yet lacks special treatment on the most crucial top-1 information. Secondly, the knowledge is largely covered by the golden information due to the fact that most top-1 predictions of teachers overlap with ground-truth tokens, which further restricts the potential of KD. To address these issues, we propose a novel method named \textbf{T}op-1 \textbf{I}nformation \textbf{E}nhanced \textbf{K}nowledge \textbf{D}istillation (TIE-KD). Specifically, we design a hierarchical ranking loss to enforce the learning of the top-1 information from the teacher. Additionally, we develop an iterative KD procedure to infuse more additional knowledge by distilling on the data without ground-truth targets. Experiments on WMT'14 English-German, WMT'14 English-French and WMT'16 English-Romanian demonstrate that our method can respectively boost Transformer$_{base}$ students by +1.04, +0.60 and +1.11 BLEU scores and significantly outperform the vanilla word-level KD baseline. Besides, our method shows higher generalizability on different teacher-student capacity gaps than existing KD techniques.
Related papers
- Knowledge From the Dark Side: Entropy-Reweighted Knowledge Distillation
for Balanced Knowledge Transfer [1.2606200500489302]
Distillation (KD) transfers knowledge from a larger "teacher" model to a student.
ERKD uses entropy in the teacher's predictions to reweight the KD loss on a sample-wise basis.
Our code is available at https://github.com/cpsu00/ER-KD.
arXiv Detail & Related papers (2023-11-22T08:34:33Z) - Knowledge Distillation Layer that Lets the Student Decide [6.689381216751284]
We propose a learnable KD layer for the student which improves KD with two distinct abilities.
i) learning how to leverage the teacher's knowledge, enabling to discard nuisance information, and ii) feeding forward the transferred knowledge deeper.
arXiv Detail & Related papers (2023-09-06T09:05:03Z) - Grouped Knowledge Distillation for Deep Face Recognition [53.57402723008569]
The light-weight student network has difficulty fitting the target logits due to its low model capacity.
We propose a Grouped Knowledge Distillation (GKD) that retains the Primary-KD and Binary-KD but omits Secondary-KD in the ultimate KD loss calculation.
arXiv Detail & Related papers (2023-04-10T09:04:38Z) - Knowledge Condensation Distillation [38.446333274732126]
Existing methods focus on excavating the knowledge hints and transferring the whole knowledge to the student.
In this paper, we propose Knowledge Condensation Distillation (KCD)
Our approach is easy to build on top of the off-the-shelf KD methods, with no extra training parameters and negligible overhead.
arXiv Detail & Related papers (2022-07-12T09:17:34Z) - Undistillable: Making A Nasty Teacher That CANNOT teach students [84.6111281091602]
This paper introduces and investigates a concept called Nasty Teacher: a specially trained teacher network that yields nearly the same performance as a normal one.
We propose a simple yet effective algorithm to build the nasty teacher, called self-undermining knowledge distillation.
arXiv Detail & Related papers (2021-05-16T08:41:30Z) - KDExplainer: A Task-oriented Attention Model for Explaining Knowledge
Distillation [59.061835562314066]
We introduce a novel task-oriented attention model, termed as KDExplainer, to shed light on the working mechanism underlying the vanilla KD.
We also introduce a portable tool, dubbed as virtual attention module (VAM), that can be seamlessly integrated with various deep neural networks (DNNs) to enhance their performance under KD.
arXiv Detail & Related papers (2021-05-10T08:15:26Z) - Knowledge Distillation Thrives on Data Augmentation [65.58705111863814]
Knowledge distillation (KD) is a general deep neural network training framework that uses a teacher model to guide a student model.
Many works have explored the rationale for its success, however, its interplay with data augmentation (DA) has not been well recognized so far.
In this paper, we are motivated by an interesting observation in classification: KD loss can benefit from extended training iterations while the cross-entropy loss does not.
We show this disparity arises because of data augmentation: KD loss can tap into the extra information from different input views brought by DA.
arXiv Detail & Related papers (2020-12-05T00:32:04Z) - Role-Wise Data Augmentation for Knowledge Distillation [48.115719640111394]
Knowledge Distillation (KD) is a common method for transferring the knowledge'' learned by one machine learning model into another.
We design data augmentation agents with distinct roles to facilitate knowledge distillation.
We find empirically that specially tailored data points enable the teacher's knowledge to be demonstrated more effectively to the student.
arXiv Detail & Related papers (2020-04-19T14:22:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.