GeNAS: Neural Architecture Search with Better Generalization
- URL: http://arxiv.org/abs/2305.08611v2
- Date: Thu, 18 May 2023 08:24:16 GMT
- Title: GeNAS: Neural Architecture Search with Better Generalization
- Authors: Joonhyun Jeong, Joonsang Yu, Geondo Park, Dongyoon Han, YoungJoon Yoo
- Abstract summary: Recent neural architecture search (NAS) approaches rely on validation loss or accuracy to find the superior network for the target data.
In this paper, we investigate a new neural architecture search measure for excavating architectures with better generalization.
- Score: 14.92869716323226
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural Architecture Search (NAS) aims to automatically excavate the optimal
network architecture with superior test performance. Recent neural architecture
search (NAS) approaches rely on validation loss or accuracy to find the
superior network for the target data. In this paper, we investigate a new
neural architecture search measure for excavating architectures with better
generalization. We demonstrate that the flatness of the loss surface can be a
promising proxy for predicting the generalization capability of neural network
architectures. We evaluate our proposed method on various search spaces,
showing similar or even better performance compared to the state-of-the-art NAS
methods. Notably, the resultant architecture found by flatness measure
generalizes robustly to various shifts in data distribution (e.g.
ImageNet-V2,-A,-O), as well as various tasks such as object detection and
semantic segmentation. Code is available at https://github.com/clovaai/GeNAS.
Related papers
- DNA Family: Boosting Weight-Sharing NAS with Block-Wise Supervisions [121.05720140641189]
We develop a family of models with the distilling neural architecture (DNA) techniques.
Our proposed DNA models can rate all architecture candidates, as opposed to previous works that can only access a sub- search space using algorithms.
Our models achieve state-of-the-art top-1 accuracy of 78.9% and 83.6% on ImageNet for a mobile convolutional network and a small vision transformer, respectively.
arXiv Detail & Related papers (2024-03-02T22:16:47Z) - Efficacy of Neural Prediction-Based Zero-Shot NAS [0.04096453902709291]
We propose a novel approach for zero-shot Neural Architecture Search (NAS) using deep learning.
Our method employs Fourier sum of sines encoding for convolutional kernels, enabling the construction of a computational feed-forward graph with a structure similar to the architecture under evaluation.
Experimental results show that our approach surpasses previous methods using graph convolutional networks in terms of correlation on the NAS-Bench-201 dataset and exhibits a higher convergence rate.
arXiv Detail & Related papers (2023-08-31T14:54:06Z) - NAS-FCOS: Efficient Search for Object Detection Architectures [113.47766862146389]
We propose an efficient method to obtain better object detectors by searching for the feature pyramid network (FPN) and the prediction head of a simple anchor-free object detector.
With carefully designed search space, search algorithms, and strategies for evaluating network quality, we are able to find top-performing detection architectures within 4 days using 8 V100 GPUs.
arXiv Detail & Related papers (2021-10-24T12:20:04Z) - Generic Neural Architecture Search via Regression [27.78105839644199]
We propose a novel and generic neural architecture search (NAS) framework, termed Generic NAS (GenNAS)
GenNAS does not use task-specific labels but instead adopts textitregression on a set of manually designed synthetic signal bases for architecture evaluation.
We then propose an automatic task search to optimize the combination of synthetic signals using limited downstream-task-specific labels.
arXiv Detail & Related papers (2021-08-04T08:21:12Z) - Search to aggregate neighborhood for graph neural network [47.47628113034479]
We propose a framework, which tries to Search to Aggregate NEighborhood (SANE) to automatically design data-specific GNN architectures.
By designing a novel and expressive search space, we propose a differentiable search algorithm, which is more efficient than previous reinforcement learning based methods.
arXiv Detail & Related papers (2021-04-14T03:15:19Z) - Weak NAS Predictors Are All You Need [91.11570424233709]
Recent predictor-based NAS approaches attempt to solve the problem with two key steps: sampling some architecture-performance pairs and fitting a proxy accuracy predictor.
We shift the paradigm from finding a complicated predictor that covers the whole architecture space to a set of weaker predictors that progressively move towards the high-performance sub-space.
Our method costs fewer samples to find the top-performance architectures on NAS-Bench-101 and NAS-Bench-201, and it achieves the state-of-the-art ImageNet performance on the NASNet search space.
arXiv Detail & Related papers (2021-02-21T01:58:43Z) - Hierarchical Neural Architecture Search for Deep Stereo Matching [131.94481111956853]
We propose the first end-to-end hierarchical NAS framework for deep stereo matching.
Our framework incorporates task-specific human knowledge into the neural architecture search framework.
It is ranked at the top 1 accuracy on KITTI stereo 2012, 2015 and Middlebury benchmarks, as well as the top 1 on SceneFlow dataset.
arXiv Detail & Related papers (2020-10-26T11:57:37Z) - DC-NAS: Divide-and-Conquer Neural Architecture Search [108.57785531758076]
We present a divide-and-conquer (DC) approach to effectively and efficiently search deep neural architectures.
We achieve a $75.1%$ top-1 accuracy on the ImageNet dataset, which is higher than that of state-of-the-art methods using the same search space.
arXiv Detail & Related papers (2020-05-29T09:02:16Z) - A Semi-Supervised Assessor of Neural Architectures [157.76189339451565]
We employ an auto-encoder to discover meaningful representations of neural architectures.
A graph convolutional neural network is introduced to predict the performance of architectures.
arXiv Detail & Related papers (2020-05-14T09:02:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.