Schema-adaptable Knowledge Graph Construction
- URL: http://arxiv.org/abs/2305.08703v4
- Date: Wed, 15 Nov 2023 12:55:56 GMT
- Title: Schema-adaptable Knowledge Graph Construction
- Authors: Hongbin Ye, Honghao Gui, Xin Xu, Xi Chen, Huajun Chen, Ningyu Zhang
- Abstract summary: Conventional Knowledge Graph Construction (KGC) approaches typically follow the static information extraction paradigm with a closed set of pre-defined schema.
We propose a new task called schema-adaptable KGC, which aims to continually extract entity, relation, and event based on a dynamically changing schema graph without re-training.
- Score: 47.772335354080795
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conventional Knowledge Graph Construction (KGC) approaches typically follow
the static information extraction paradigm with a closed set of pre-defined
schema. As a result, such approaches fall short when applied to dynamic
scenarios or domains, whereas a new type of knowledge emerges. This
necessitates a system that can handle evolving schema automatically to extract
information for KGC. To address this need, we propose a new task called
schema-adaptable KGC, which aims to continually extract entity, relation, and
event based on a dynamically changing schema graph without re-training. We
first split and convert existing datasets based on three principles to build a
benchmark, i.e., horizontal schema expansion, vertical schema expansion, and
hybrid schema expansion; then investigate the schema-adaptable performance of
several well-known approaches such as Text2Event, TANL, UIE and GPT-3.5. We
further propose a simple yet effective baseline dubbed \textsc{AdaKGC}, which
contains schema-enriched prefix instructor and schema-conditioned dynamic
decoding to better handle evolving schema. Comprehensive experimental results
illustrate that AdaKGC can outperform baselines but still have room for
improvement. We hope the proposed work can deliver benefits to the community.
Code and datasets available at https://github.com/zjunlp/AdaKGC.
Related papers
- Extract, Define, Canonicalize: An LLM-based Framework for Knowledge Graph Construction [12.455647753787442]
We propose a three-phase framework named Extract-Define-Canonicalize (EDC)
EDC is flexible in that it can be applied to settings where a pre-defined target schema is available and when it is not.
We demonstrate EDC is able to extract high-quality triplets without any parameter tuning and with significantly larger schemas compared to prior works.
arXiv Detail & Related papers (2024-04-05T02:53:51Z) - Contextualization Distillation from Large Language Model for Knowledge
Graph Completion [51.126166442122546]
We introduce the Contextualization Distillation strategy, a plug-in-and-play approach compatible with both discriminative and generative KGC frameworks.
Our method begins by instructing large language models to transform compact, structural triplets into context-rich segments.
Comprehensive evaluations across diverse datasets and KGC techniques highlight the efficacy and adaptability of our approach.
arXiv Detail & Related papers (2024-01-28T08:56:49Z) - Open-Domain Hierarchical Event Schema Induction by Incremental Prompting
and Verification [81.17473088621209]
We treat event schemas as a form of commonsense knowledge that can be derived from large language models (LLMs)
We design an incremental prompting and verification method to break down the construction of a complex event graph into three stages.
Compared to directly using LLMs to generate a linearized graph, our method can generate large and complex schemas with 7.2% F1 improvement in temporal relations and 31.0% F1 improvement in hierarchical relations.
arXiv Detail & Related papers (2023-07-05T01:00:44Z) - Graph schemas as abstractions for transfer learning, inference, and
planning [5.565347203528707]
We propose graph schemas as a mechanism of abstraction for transfer learning.
Latent graph learning is emerging as a new computational model of the hippocampus.
By treating learned latent graphs as prior knowledge, new environments can be quickly learned.
arXiv Detail & Related papers (2023-02-14T21:23:22Z) - EGRC-Net: Embedding-induced Graph Refinement Clustering Network [66.44293190793294]
We propose a novel graph clustering network called Embedding-Induced Graph Refinement Clustering Network (EGRC-Net)
EGRC-Net effectively utilizes the learned embedding to adaptively refine the initial graph and enhance the clustering performance.
Our proposed methods consistently outperform several state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-19T09:08:43Z) - SMiLE: Schema-augmented Multi-level Contrastive Learning for Knowledge
Graph Link Prediction [28.87290783250351]
Link prediction is the task of inferring missing links between entities in knowledge graphs.
We propose a novel Multi-level contrastive LEarning framework (SMiLE) to conduct knowledge graph link prediction.
arXiv Detail & Related papers (2022-10-10T17:40:19Z) - Semantic Enhanced Text-to-SQL Parsing via Iteratively Learning Schema
Linking Graph [6.13728903057727]
The generalizability to new databases is of vital importance to Text-to- systems which aim to parse human utterances intosql statements.
In this paper, we propose a framework named IS ESL to iteratively build a enhanced semantic schema-linking graph between question tokens and database schemas.
Extensive experiments on three benchmarks demonstrate that IS ESL could consistently outperform the baselines and further investigations show its generalizability and robustness.
arXiv Detail & Related papers (2022-08-08T03:59:33Z) - Proton: Probing Schema Linking Information from Pre-trained Language
Models for Text-to-SQL Parsing [66.55478402233399]
We propose a framework to elicit relational structures via a probing procedure based on Poincar'e distance metric.
Compared with commonly-used rule-based methods for schema linking, we found that probing relations can robustly capture semantic correspondences.
Our framework sets new state-of-the-art performance on three benchmarks.
arXiv Detail & Related papers (2022-06-28T14:05:25Z) - Modeling Heterogeneous Hierarchies with Relation-specific Hyperbolic
Cones [64.75766944882389]
We present ConE (Cone Embedding), a KG embedding model that is able to simultaneously model multiple hierarchical as well as non-hierarchical relations in a knowledge graph.
In particular, ConE uses cone containment constraints in different subspaces of the hyperbolic embedding space to capture multiple heterogeneous hierarchies.
Our approach yields new state-of-the-art Hits@1 of 45.3% on WN18RR and 16.1% on DDB14 (0.231 MRR)
arXiv Detail & Related papers (2021-10-28T07:16:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.