CFT-Forensics: High-Performance Byzantine Accountability for Crash Fault Tolerant Protocols
- URL: http://arxiv.org/abs/2305.09123v3
- Date: Mon, 3 Jun 2024 14:20:12 GMT
- Title: CFT-Forensics: High-Performance Byzantine Accountability for Crash Fault Tolerant Protocols
- Authors: Weizhao Tang, Peiyao Sheng, Ronghao Ni, Pronoy Roy, Xuechao Wang, Giulia Fanti, Pramod Viswanath,
- Abstract summary: Crash fault tolerant (CFT) consensus algorithms are commonly used in scenarios where system components are trusted.
We propose CFT-Forensics, an accountability framework for CFT protocols.
- Score: 14.503216369017762
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Crash fault tolerant (CFT) consensus algorithms are commonly used in scenarios where system components are trusted -- e.g., enterprise settings and government infrastructure. However, CFT consensus can be broken by even a single corrupt node. A desirable property in the face of such potential Byzantine faults is \emph{accountability}: if a corrupt node breaks protocol and affects consensus safety, it should be possible to identify the culpable components with cryptographic integrity from the node states. Today, the best-known protocol for providing accountability to CFT protocols is called PeerReview; it essentially records a signed transcript of all messages sent during the CFT protocol. Because PeerReview is agnostic to the underlying CFT protocol, it incurs high communication and storage overhead. We propose CFT-Forensics, an accountability framework for CFT protocols. We show that for a special family of \emph{forensics-compliant} CFT protocols (which includes widely-used CFT protocols like Raft and multi-Paxos), CFT-Forensics gives provable accountability guarantees. Under realistic deployment settings, we show theoretically that CFT-Forensics operates at a fraction of the cost of PeerReview. We subsequently instantiate CFT-Forensics for Raft, and implement Raft-Forensics as an extension to the popular nuRaft library. In extensive experiments, we demonstrate that Raft-Forensics adds low overhead to vanilla Raft. With 256 byte messages, Raft-Forensics achieves a peak throughput 87.8\% of vanilla Raft at 46\% higher latency ($+44$ ms). We finally integrate Raft-Forensics into the open-source central bank digital currency OpenCBDC, and show that in wide-area network experiments, Raft-Forensics achieves 97.8\% of the throughput of Raft, with 14.5\% higher latency ($+326$ ms).
Related papers
- Recipe: Hardware-Accelerated Replication Protocols [0.4900774081652471]
This paper introduces Recipe, a novel approach to transforming CFT protocols to operate securely in Byzantine settings.
Recipe rethinks CFT protocols in the context of modern cloud hardware, including many-core servers, RDMA-capable networks, and Trusted Execution Environments (TEEs)
The results demonstrate up to 24x higher throughput compared to PBFT and 5.9x better performance than state-of-the-art BFT protocols.
arXiv Detail & Related papers (2025-02-13T12:04:53Z) - TetraBFT: Reducing Latency of Unauthenticated, Responsive BFT Consensus [1.6364535330823093]
TetraBFT is a Byzantine fault tolerant protocol for solving consensus in partial synchrony.
We validate the correctness of TetraBFT through rigorous security analysis and formal verification.
We extend TetraBFT into a multi-shot, chained consensus protocol.
arXiv Detail & Related papers (2024-05-04T08:54:42Z) - FoC: Figure out the Cryptographic Functions in Stripped Binaries with LLMs [54.27040631527217]
We propose a novel framework called FoC to Figure out the Cryptographic functions in stripped binaries.
We first build a binary large language model (FoC-BinLLM) to summarize the semantics of cryptographic functions in natural language.
We then build a binary code similarity model (FoC-Sim) upon the FoC-BinLLM to create change-sensitive representations and use it to retrieve similar implementations of unknown cryptographic functions in a database.
arXiv Detail & Related papers (2024-03-27T09:45:33Z) - Vivisecting the Dissection: On the Role of Trusted Components in BFT Protocols [6.458811841777819]
We argue that the most worthwhile use of trusted component (TC) based Byzantine fault-tolerant (BFT) protocols is indeed to make them as resilient as crash fault-tolerant (CFT) protocols.
arXiv Detail & Related papers (2023-12-10T00:39:22Z) - Quantum Proofs of Deletion for Learning with Errors [91.3755431537592]
We construct the first fully homomorphic encryption scheme with certified deletion.
Our main technical ingredient is an interactive protocol by which a quantum prover can convince a classical verifier that a sample from the Learning with Errors distribution in the form of a quantum state was deleted.
arXiv Detail & Related papers (2022-03-03T10:07:32Z) - Disentangling Decentralized Finance (DeFi) Compositions [1.7205106391379026]
Decentralized Finance protocols aim to disrupt traditional finance and offer services on top of distributed ledgers.
We study the interactions of protocols and associated smart contracts.
We propose an algorithm to decompose a protocol call into a nested set of building blocks that may be part of other DeFi protocols.
arXiv Detail & Related papers (2021-11-05T14:02:18Z) - Round-robin differential phase-time-shifting protocol for quantum key
distribution: theory and experiment [58.03659958248968]
Quantum key distribution (QKD) allows the establishment of common cryptographic keys among distant parties.
Recently, a QKD protocol that circumvents the need for monitoring signal disturbance, has been proposed and demonstrated in initial experiments.
We derive the security proofs of the round-robin differential phase-time-shifting protocol in the collective attack scenario.
Our results show that the RRDPTS protocol can achieve higher secret key rate in comparison with the RRDPS, in the condition of high quantum bit error rate.
arXiv Detail & Related papers (2021-03-15T15:20:09Z) - Beta-CROWN: Efficient Bound Propagation with Per-neuron Split
Constraints for Complete and Incomplete Neural Network Verification [151.62491805851107]
We develop $beta$-CROWN, a bound propagation based verifier that can fully encode per-neuron splits.
$beta$-CROWN is close to three orders of magnitude faster than LP-based BaB methods for robustness verification.
By terminating BaB early, our method can also be used for incomplete verification.
arXiv Detail & Related papers (2021-03-11T11:56:54Z) - Security Limitations of Classical-Client Delegated Quantum Computing [54.28005879611532]
A client remotely prepares a quantum state using a classical channel.
Privacy loss incurred by employing $RSP_CC$ as a sub-module is unclear.
We show that a specific $RSP_CC$ protocol can replace the quantum channel at least in some contexts.
arXiv Detail & Related papers (2020-07-03T13:15:13Z) - Capacity of Quantum Private Information Retrieval with Colluding Servers [71.78056556634196]
Quantum private information retrieval (QPIR) is a protocol in which a user retrieves one of multiple files from non-communicating servers.
As variants of QPIR with stronger security requirements, symmetric QPIR is a protocol in which no other files than the target file are leaked to the user.
We construct a capacity-achieving QPIR protocol by the stabilizer formalism and prove the optimality of our protocol.
arXiv Detail & Related papers (2020-01-13T18:12:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.