Lightweight Self-Knowledge Distillation with Multi-source Information
Fusion
- URL: http://arxiv.org/abs/2305.09183v1
- Date: Tue, 16 May 2023 05:46:31 GMT
- Title: Lightweight Self-Knowledge Distillation with Multi-source Information
Fusion
- Authors: Xucong Wang, Pengchao Han, Lei Guo
- Abstract summary: Knowledge Distillation (KD) is a powerful technique for transferring knowledge between neural network models.
We propose a lightweight SKD framework that utilizes multi-source information to construct a more informative teacher.
We validate the performance of the proposed DRG, DSR, and their combination through comprehensive experiments on various datasets and models.
- Score: 3.107478665474057
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge Distillation (KD) is a powerful technique for transferring
knowledge between neural network models, where a pre-trained teacher model is
used to facilitate the training of the target student model. However, the
availability of a suitable teacher model is not always guaranteed. To address
this challenge, Self-Knowledge Distillation (SKD) attempts to construct a
teacher model from itself. Existing SKD methods add Auxiliary Classifiers (AC)
to intermediate layers of the model or use the history models and models with
different input data within the same class. However, these methods are
computationally expensive and only capture time-wise and class-wise features of
data. In this paper, we propose a lightweight SKD framework that utilizes
multi-source information to construct a more informative teacher. Specifically,
we introduce a Distillation with Reverse Guidance (DRG) method that considers
different levels of information extracted by the model, including edge, shape,
and detail of the input data, to construct a more informative teacher.
Additionally, we design a Distillation with Shape-wise Regularization (DSR)
method that ensures a consistent shape of ranked model output for all data. We
validate the performance of the proposed DRG, DSR, and their combination
through comprehensive experiments on various datasets and models. Our results
demonstrate the superiority of the proposed methods over baselines (up to
2.87%) and state-of-the-art SKD methods (up to 1.15%), while being
computationally efficient and robust. The code is available at
https://github.com/xucong-parsifal/LightSKD.
Related papers
- Distilling Privileged Multimodal Information for Expression Recognition using Optimal Transport [46.91791643660991]
Deep learning models for multimodal expression recognition have reached remarkable performance in controlled laboratory environments.
These models struggle in the wild because of the unavailability and quality of modalities used for training.
In practice, only a subset of the training-time modalities may be available at test time.
Learning with privileged information enables models to exploit data from additional modalities that are only available during training.
arXiv Detail & Related papers (2024-01-27T19:44:15Z) - EmbedDistill: A Geometric Knowledge Distillation for Information
Retrieval [83.79667141681418]
Large neural models (such as Transformers) achieve state-of-the-art performance for information retrieval (IR)
We propose a novel distillation approach that leverages the relative geometry among queries and documents learned by the large teacher model.
We show that our approach successfully distills from both dual-encoder (DE) and cross-encoder (CE) teacher models to 1/10th size asymmetric students that can retain 95-97% of the teacher performance.
arXiv Detail & Related papers (2023-01-27T22:04:37Z) - Directed Acyclic Graph Factorization Machines for CTR Prediction via
Knowledge Distillation [65.62538699160085]
We propose a Directed Acyclic Graph Factorization Machine (KD-DAGFM) to learn the high-order feature interactions from existing complex interaction models for CTR prediction via Knowledge Distillation.
KD-DAGFM achieves the best performance with less than 21.5% FLOPs of the state-of-the-art method on both online and offline experiments.
arXiv Detail & Related papers (2022-11-21T03:09:42Z) - Exploring Inconsistent Knowledge Distillation for Object Detection with
Data Augmentation [66.25738680429463]
Knowledge Distillation (KD) for object detection aims to train a compact detector by transferring knowledge from a teacher model.
We propose inconsistent knowledge distillation (IKD) which aims to distill knowledge inherent in the teacher model's counter-intuitive perceptions.
Our method outperforms state-of-the-art KD baselines on one-stage, two-stage and anchor-free object detectors.
arXiv Detail & Related papers (2022-09-20T16:36:28Z) - CMD: Self-supervised 3D Action Representation Learning with Cross-modal
Mutual Distillation [130.08432609780374]
In 3D action recognition, there exists rich complementary information between skeleton modalities.
We propose a new Cross-modal Mutual Distillation (CMD) framework with the following designs.
Our approach outperforms existing self-supervised methods and sets a series of new records.
arXiv Detail & Related papers (2022-08-26T06:06:09Z) - Knowledge Distillation with Representative Teacher Keys Based on
Attention Mechanism for Image Classification Model Compression [1.503974529275767]
knowledge distillation (KD) has been recognized as one of the effective method of model compression to decrease the model parameters.
Inspired by attention mechanism, we propose a novel KD method called representative teacher key (RTK)
Our proposed RTK can effectively improve the classification accuracy of the state-of-the-art attention-based KD method.
arXiv Detail & Related papers (2022-06-26T05:08:50Z) - Oracle Teacher: Leveraging Target Information for Better Knowledge
Distillation of CTC Models [10.941519846908697]
We introduce a new type of teacher model for connectionist temporal classification ( CTC)-based sequence models, namely Oracle Teacher.
Since the Oracle Teacher learns a more accurate CTC alignment by referring to the target information, it can provide the student with more optimal guidance.
Based on a many-to-one mapping property of the CTC algorithm, we present a training strategy that can effectively prevent the trivial solution.
arXiv Detail & Related papers (2021-11-05T14:14:05Z) - Self-Feature Regularization: Self-Feature Distillation Without Teacher
Models [0.0]
Self-Feature Regularization(SFR) is proposed, which uses features in the deep layers to supervise feature learning in the shallow layers.
We firstly use generalization-l2 loss to match local features and a many-to-one approach to distill more intensively in the channel dimension.
arXiv Detail & Related papers (2021-03-12T15:29:00Z) - Reinforced Multi-Teacher Selection for Knowledge Distillation [54.72886763796232]
knowledge distillation is a popular method for model compression.
Current methods assign a fixed weight to a teacher model in the whole distillation.
Most of the existing methods allocate an equal weight to every teacher model.
In this paper, we observe that, due to the complexity of training examples and the differences in student model capability, learning differentially from teacher models can lead to better performance of student models distilled.
arXiv Detail & Related papers (2020-12-11T08:56:39Z) - Residual Knowledge Distillation [96.18815134719975]
This work proposes Residual Knowledge Distillation (RKD), which further distills the knowledge by introducing an assistant (A)
In this way, S is trained to mimic the feature maps of T, and A aids this process by learning the residual error between them.
Experiments show that our approach achieves appealing results on popular classification datasets, CIFAR-100 and ImageNet.
arXiv Detail & Related papers (2020-02-21T07:49:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.