AR-Diffusion: Auto-Regressive Diffusion Model for Text Generation
- URL: http://arxiv.org/abs/2305.09515v3
- Date: Wed, 13 Dec 2023 10:24:00 GMT
- Title: AR-Diffusion: Auto-Regressive Diffusion Model for Text Generation
- Authors: Tong Wu, Zhihao Fan, Xiao Liu, Yeyun Gong, Yelong Shen, Jian Jiao,
Hai-Tao Zheng, Juntao Li, Zhongyu Wei, Jian Guo, Nan Duan, Weizhu Chen
- Abstract summary: We introduce Auto-Regressive Diffusion (AR-Diffusion) to account for the inherent sequential characteristic of natural language.
AR-Diffusion ensures that the generation of tokens on the right depends on the generated ones on the left, a mechanism achieved through employing a dynamic number of denoising steps.
In a series of experiments on various text generation tasks, AR-Diffusion clearly demonstrated its superiority over existing diffusion language models.
- Score: 138.98095392584693
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have gained significant attention in the realm of image
generation due to their exceptional performance. Their success has been
recently expanded to text generation via generating all tokens within a
sequence concurrently. However, natural language exhibits a far more pronounced
sequential dependency in comparison to images, and the majority of existing
language models are trained with a left-to-right auto-regressive approach. To
account for the inherent sequential characteristic of natural language, we
introduce Auto-Regressive Diffusion (AR-Diffusion). AR-Diffusion ensures that
the generation of tokens on the right depends on the generated ones on the
left, a mechanism achieved through employing a dynamic number of denoising
steps that vary based on token position. This results in tokens on the left
undergoing fewer denoising steps than those on the right, thereby enabling them
to generate earlier and subsequently influence the generation of tokens on the
right. In a series of experiments on various text generation tasks, including
text summarization, machine translation, and common sense generation,
AR-Diffusion clearly demonstrated its superiority over existing diffusion
language models and that it can be $100\times\sim600\times$ faster when
achieving comparable results. Our code is available at
https://github.com/microsoft/ProphetNet/tree/master/AR-diffusion.
Related papers
- LaDiC: Are Diffusion Models Really Inferior to Autoregressive Counterparts for Image-to-Text Generation? [10.72249123249003]
We revisit diffusion models, highlighting their capacity for holistic context modeling and parallel decoding.
We introduce a novel architecture, LaDiC, which utilizes a split BERT to create a dedicated latent space for captions.
LaDiC achieves state-of-the-art performance for diffusion-based methods on the MS dataset with 38.2 BLEU@4 and 126.2 CIDEr.
arXiv Detail & Related papers (2024-04-16T17:47:16Z) - DiffCap: Exploring Continuous Diffusion on Image Captioning [16.572887005727555]
We propose a novel method DiffCap to apply continuous diffusions on image captioning.
Our method transforms discrete tokens in a natural way and applies continuous diffusion on them to successfully fuse extracted image features.
Our experiments on COCO dataset demonstrate that our method uses a much simpler structure to achieve comparable results to the previous non-autoregressive works.
arXiv Detail & Related papers (2023-05-20T09:02:10Z) - TESS: Text-to-Text Self-Conditioned Simplex Diffusion [56.881170312435444]
Text-to-text Self-conditioned Simplex Diffusion employs a new form of self-conditioning, and applies the diffusion process on the logit simplex space rather than the learned embedding space.
We demonstrate that TESS outperforms state-of-the-art non-autoregressive models, requires fewer diffusion steps with minimal drop in performance, and is competitive with pretrained autoregressive sequence-to-sequence models.
arXiv Detail & Related papers (2023-05-15T06:33:45Z) - A Cheaper and Better Diffusion Language Model with Soft-Masked Noise [62.719656543880596]
Masked-Diffuse LM is a novel diffusion model for language modeling, inspired by linguistic features in languages.
Specifically, we design a linguistic-informed forward process which adds corruptions to the text through strategically soft-masking to better noise the textual data.
We demonstrate that our Masked-Diffuse LM can achieve better generation quality than the state-of-the-art diffusion models with better efficiency.
arXiv Detail & Related papers (2023-04-10T17:58:42Z) - SeqDiffuSeq: Text Diffusion with Encoder-Decoder Transformers [50.90457644954857]
In this work, we apply diffusion models to approach sequence-to-sequence text generation.
We propose SeqDiffuSeq, a text diffusion model for sequence-to-sequence generation.
Experiment results illustrate the good performance on sequence-to-sequence generation in terms of text quality and inference time.
arXiv Detail & Related papers (2022-12-20T15:16:24Z) - eDiffi: Text-to-Image Diffusion Models with an Ensemble of Expert
Denoisers [87.52504764677226]
Large-scale diffusion-based generative models have led to breakthroughs in text-conditioned high-resolution image synthesis.
We train an ensemble of text-to-image diffusion models specialized for different stages synthesis.
Our ensemble of diffusion models, called eDiffi, results in improved text alignment while maintaining the same inference cost.
arXiv Detail & Related papers (2022-11-02T17:43:04Z) - ELMER: A Non-Autoregressive Pre-trained Language Model for Efficient and
Effective Text Generation [97.64625999380425]
We study the text generation task under the approach of pre-trained language models (PLMs)
By leveraging the early exit technique, ELMER enables the token generations at different layers, according to their prediction confidence.
Experiments on three text generation tasks show that ELMER significantly outperforms NAR models.
arXiv Detail & Related papers (2022-10-24T14:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.