Boosting Event Extraction with Denoised Structure-to-Text Augmentation
- URL: http://arxiv.org/abs/2305.09598v1
- Date: Tue, 16 May 2023 16:52:07 GMT
- Title: Boosting Event Extraction with Denoised Structure-to-Text Augmentation
- Authors: bo wang, Heyan Huang, Xiaochi Wei, Ge Shi, Xiao Liu, Chong Feng, Tong
Zhou, Shuaiqiang Wang and Dawei Yin
- Abstract summary: Event extraction aims to recognize pre-defined event triggers and arguments from texts.
Recent data augmentation methods often neglect the problem of grammatical incorrectness.
We propose a denoised structure-to-text augmentation framework for event extraction DAEE.
- Score: 52.21703002404442
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Event extraction aims to recognize pre-defined event triggers and arguments
from texts, which suffer from the lack of high-quality annotations. In most NLP
applications, involving a large scale of synthetic training data is a practical
and effective approach to alleviate the problem of data scarcity. However, when
applying to the task of event extraction, recent data augmentation methods
often neglect the problem of grammatical incorrectness, structure misalignment,
and semantic drifting, leading to unsatisfactory performances. In order to
solve these problems, we propose a denoised structure-to-text augmentation
framework for event extraction DAEE, which generates additional training data
through the knowledge-based structure-to-text generation model and selects the
effective subset from the generated data iteratively with a deep reinforcement
learning agent. Experimental results on several datasets demonstrate that the
proposed method generates more diverse text representations for event
extraction and achieves comparable results with the state-of-the-art.
Related papers
- Decompose, Enrich, and Extract! Schema-aware Event Extraction using LLMs [45.83950260830323]
This work focuses on harnessing Large Language Models for automated Event Extraction.
It introduces a new method to address hallucination by decomposing the task into Event Detection and Event Argument Extraction.
arXiv Detail & Related papers (2024-06-03T06:55:10Z) - Text2Data: Low-Resource Data Generation with Textual Control [104.38011760992637]
Natural language serves as a common and straightforward control signal for humans to interact seamlessly with machines.
We propose Text2Data, a novel approach that utilizes unlabeled data to understand the underlying data distribution through an unsupervised diffusion model.
It undergoes controllable finetuning via a novel constraint optimization-based learning objective that ensures controllability and effectively counteracts catastrophic forgetting.
arXiv Detail & Related papers (2024-02-08T03:41:39Z) - Enhancing Argument Structure Extraction with Efficient Leverage of
Contextual Information [79.06082391992545]
We propose an Efficient Context-aware model (ECASE) that fully exploits contextual information.
We introduce a sequence-attention module and distance-weighted similarity loss to aggregate contextual information and argumentative information.
Our experiments on five datasets from various domains demonstrate that our model achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-10-08T08:47:10Z) - Token-Event-Role Structure-based Multi-Channel Document-Level Event
Extraction [15.02043375212839]
This paper introduces a novel framework for document-level event extraction, incorporating a new data structure called token-event-role.
The proposed data structure enables our model to uncover the primary role of tokens in multiple events, facilitating a more comprehensive understanding of event relationships.
The results demonstrate that our approach outperforms the state-of-the-art method by 9.5 percentage points in terms of the F1 score.
arXiv Detail & Related papers (2023-06-30T15:22:57Z) - STAR: Boosting Low-Resource Information Extraction by Structure-to-Text
Data Generation with Large Language Models [56.27786433792638]
STAR is a data generation method that leverages Large Language Models (LLMs) to synthesize data instances.
We design fine-grained step-by-step instructions to obtain the initial data instances.
Our experiments show that the data generated by STAR significantly improve the performance of low-resource event extraction and relation extraction tasks.
arXiv Detail & Related papers (2023-05-24T12:15:19Z) - Curriculum-Based Self-Training Makes Better Few-Shot Learners for
Data-to-Text Generation [56.98033565736974]
We propose Curriculum-Based Self-Training (CBST) to leverage unlabeled data in a rearranged order determined by the difficulty of text generation.
Our method can outperform fine-tuning and task-adaptive pre-training methods, and achieve state-of-the-art performance in the few-shot setting of data-to-text generation.
arXiv Detail & Related papers (2022-06-06T16:11:58Z) - Visualization Techniques to Enhance Automated Event Extraction [0.0]
This case study seeks to identify potential triggers of state-led mass killings from news articles using NLP.
We demonstrate how visualizations can aid in each stage, from exploratory analysis of raw data, to machine learning training analysis, and finally post-inference validation.
arXiv Detail & Related papers (2021-06-11T19:24:54Z) - Improving Commonsense Causal Reasoning by Adversarial Training and Data
Augmentation [14.92157586545743]
This paper presents a number of techniques for making models more robust in the domain of causal reasoning.
We show a statistically significant improvement on performance and on both datasets, even with only a small number of additionally generated data points.
arXiv Detail & Related papers (2021-01-13T09:55:29Z) - Hybrid Attention-Based Transformer Block Model for Distant Supervision
Relation Extraction [20.644215991166902]
We propose a new framework using hybrid attention-based Transformer block with multi-instance learning to perform the DSRE task.
The proposed approach can outperform the state-of-the-art algorithms on the evaluation dataset.
arXiv Detail & Related papers (2020-03-10T13:05:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.