Tailoring Instructions to Student's Learning Levels Boosts Knowledge Distillation
- URL: http://arxiv.org/abs/2305.09651v3
- Date: Wed, 15 May 2024 15:32:27 GMT
- Title: Tailoring Instructions to Student's Learning Levels Boosts Knowledge Distillation
- Authors: Yuxin Ren, Zihan Zhong, Xingjian Shi, Yi Zhu, Chun Yuan, Mu Li,
- Abstract summary: Learning Good Teacher Matters (LGTM) is an efficient training technique for incorporating distillation influence into the teacher's learning process.
Our LGTM outperforms 10 common knowledge distillation baselines on 6 text classification tasks in the GLUE benchmark.
- Score: 52.53446712834569
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: It has been commonly observed that a teacher model with superior performance does not necessarily result in a stronger student, highlighting a discrepancy between current teacher training practices and effective knowledge transfer. In order to enhance the guidance of the teacher training process, we introduce the concept of distillation influence to determine the impact of distillation from each training sample on the student's generalization ability. In this paper, we propose Learning Good Teacher Matters (LGTM), an efficient training technique for incorporating distillation influence into the teacher's learning process. By prioritizing samples that are likely to enhance the student's generalization ability, our LGTM outperforms 10 common knowledge distillation baselines on 6 text classification tasks in the GLUE benchmark.
Related papers
- Supervision Complexity and its Role in Knowledge Distillation [65.07910515406209]
We study the generalization behavior of a distilled student.
The framework highlights a delicate interplay among the teacher's accuracy, the student's margin with respect to the teacher predictions, and the complexity of the teacher predictions.
We demonstrate efficacy of online distillation and validate the theoretical findings on a range of image classification benchmarks and model architectures.
arXiv Detail & Related papers (2023-01-28T16:34:47Z) - Teaching What You Should Teach: A Data-Based Distillation Method [20.595460553747163]
We introduce the "Teaching what you Should Teach" strategy into a knowledge distillation framework.
We propose a data-based distillation method named "TST" that searches for desirable augmented samples to assist in distilling more efficiently and rationally.
To be specific, we design a neural network-based data augmentation module with priori bias, which assists in finding what meets the teacher's strengths but the student's weaknesses.
arXiv Detail & Related papers (2022-12-11T06:22:14Z) - Gradient Knowledge Distillation for Pre-trained Language Models [21.686694954239865]
We propose Gradient Knowledge Distillation (GKD) to incorporate the gradient alignment objective into the distillation process.
Experimental results show that GKD outperforms previous KD methods regarding student performance.
arXiv Detail & Related papers (2022-11-02T12:07:16Z) - Toward Student-Oriented Teacher Network Training For Knowledge Distillation [40.55715466657349]
We propose a teacher training method SoTeacher which incorporates Lipschitz regularization and consistency regularization into ERM.
Experiments on benchmark datasets using various knowledge distillation algorithms and teacher-student pairs confirm that SoTeacher can improve student accuracy consistently.
arXiv Detail & Related papers (2022-06-14T07:51:25Z) - Better Teacher Better Student: Dynamic Prior Knowledge for Knowledge
Distillation [70.92135839545314]
We propose the dynamic prior knowledge (DPK), which integrates part of teacher's features as the prior knowledge before the feature distillation.
Our DPK makes the performance of the student model positively correlated with that of the teacher model, which means that we can further boost the accuracy of students by applying larger teachers.
arXiv Detail & Related papers (2022-06-13T11:52:13Z) - On the benefits of knowledge distillation for adversarial robustness [53.41196727255314]
We show that knowledge distillation can be used directly to boost the performance of state-of-the-art models in adversarial robustness.
We present Adversarial Knowledge Distillation (AKD), a new framework to improve a model's robust performance.
arXiv Detail & Related papers (2022-03-14T15:02:13Z) - Distilling Knowledge via Intermediate Classifier Heads [0.5584060970507505]
Knowledge distillation is a transfer-learning approach to train a resource-limited student model with the guide of a pre-trained larger teacher model.
We introduce knowledge distillation via intermediate heads to mitigate the impact of the capacity gap.
Our experiments on various teacher-student pairs and datasets have demonstrated that the proposed approach outperforms the canonical knowledge distillation approach.
arXiv Detail & Related papers (2021-02-28T12:52:52Z) - Learning Student-Friendly Teacher Networks for Knowledge Distillation [50.11640959363315]
We propose a novel knowledge distillation approach to facilitate the transfer of dark knowledge from a teacher to a student.
Contrary to most of the existing methods that rely on effective training of student models given pretrained teachers, we aim to learn the teacher models that are friendly to students.
arXiv Detail & Related papers (2021-02-12T07:00:17Z) - Interactive Knowledge Distillation [79.12866404907506]
We propose an InterActive Knowledge Distillation scheme to leverage the interactive teaching strategy for efficient knowledge distillation.
In the distillation process, the interaction between teacher and student networks is implemented by a swapping-in operation.
Experiments with typical settings of teacher-student networks demonstrate that the student networks trained by our IAKD achieve better performance than those trained by conventional knowledge distillation methods.
arXiv Detail & Related papers (2020-07-03T03:22:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.