ReasonNet: End-to-End Driving with Temporal and Global Reasoning
- URL: http://arxiv.org/abs/2305.10507v1
- Date: Wed, 17 May 2023 18:24:43 GMT
- Title: ReasonNet: End-to-End Driving with Temporal and Global Reasoning
- Authors: Hao Shao, Letian Wang, Ruobing Chen, Steven L. Waslander, Hongsheng
Li, Yu Liu
- Abstract summary: We present ReasonNet, a novel end-to-end driving framework that extensively exploits both temporal and global information of the driving scene.
Our method can effectively process the interactions and relationships among features in different frames.
Reasoning about the global information of the scene can also improve overall perception performance.
- Score: 31.319673950804972
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The large-scale deployment of autonomous vehicles is yet to come, and one of
the major remaining challenges lies in urban dense traffic scenarios. In such
cases, it remains challenging to predict the future evolution of the scene and
future behaviors of objects, and to deal with rare adverse events such as the
sudden appearance of occluded objects. In this paper, we present ReasonNet, a
novel end-to-end driving framework that extensively exploits both temporal and
global information of the driving scene. By reasoning on the temporal behavior
of objects, our method can effectively process the interactions and
relationships among features in different frames. Reasoning about the global
information of the scene can also improve overall perception performance and
benefit the detection of adverse events, especially the anticipation of
potential danger from occluded objects. For comprehensive evaluation on
occlusion events, we also release publicly a driving simulation benchmark
DriveOcclusionSim consisting of diverse occlusion events. We conduct extensive
experiments on multiple CARLA benchmarks, where our model outperforms all prior
methods, ranking first on the sensor track of the public CARLA Leaderboard.
Related papers
- CRASH: Crash Recognition and Anticipation System Harnessing with Context-Aware and Temporal Focus Attentions [13.981748780317329]
Accurately and promptly predicting accidents among surrounding traffic agents from camera footage is crucial for the safety of autonomous vehicles (AVs)
This study introduces a novel accident anticipation framework for AVs, termed CRASH.
It seamlessly integrates five components: object detector, feature extractor, object-aware module, context-aware module, and multi-layer fusion.
Our model surpasses existing top baselines in critical evaluation metrics like Average Precision (AP) and mean Time-To-Accident (mTTA)
arXiv Detail & Related papers (2024-07-25T04:12:49Z) - QuAD: Query-based Interpretable Neural Motion Planning for Autonomous Driving [33.609780917199394]
Self-driving vehicles must understand its environment to determine appropriate action.
Traditional systems rely on object detection to find agents in the scene.
We present a unified, interpretable, and efficient autonomy framework that moves away from cascading modules that first perceive occupancy relevant-temporal autonomy.
arXiv Detail & Related papers (2024-04-01T21:11:43Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
We introduce SAFE-SIM, a controllable closed-loop safety-critical simulation framework.
Our approach yields two distinct advantages: 1) generating realistic long-tail safety-critical scenarios that closely reflect real-world conditions, and 2) providing controllable adversarial behavior for more comprehensive and interactive evaluations.
We validate our framework empirically using the nuScenes and nuPlan datasets across multiple planners, demonstrating improvements in both realism and controllability.
arXiv Detail & Related papers (2023-12-31T04:14:43Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
A self-driving vehicle (SDV) must be able to perceive its surroundings and predict the future behavior of other traffic participants.
Existing works either perform object detection followed by trajectory of the detected objects, or predict dense occupancy and flow grids for the whole scene.
This motivates our unified approach to perception and future prediction that implicitly represents occupancy and flow over time with a single neural network.
arXiv Detail & Related papers (2023-08-02T23:39:24Z) - Safety-aware Motion Prediction with Unseen Vehicles for Autonomous
Driving [104.32241082170044]
We study a new task, safety-aware motion prediction with unseen vehicles for autonomous driving.
Unlike the existing trajectory prediction task for seen vehicles, we aim at predicting an occupancy map.
Our approach is the first one that can predict the existence of unseen vehicles in most cases.
arXiv Detail & Related papers (2021-09-03T13:33:33Z) - Deep Structured Reactive Planning [94.92994828905984]
We propose a novel data-driven, reactive planning objective for self-driving vehicles.
We show that our model outperforms a non-reactive variant in successfully completing highly complex maneuvers.
arXiv Detail & Related papers (2021-01-18T01:43:36Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
Roads have well defined geometries, topologies, and traffic rules.
In this paper we propose to incorporate structured priors as a loss function.
We demonstrate the effectiveness of our approach on real-world self-driving datasets.
arXiv Detail & Related papers (2020-06-04T03:56:11Z) - PnPNet: End-to-End Perception and Prediction with Tracking in the Loop [82.97006521937101]
We tackle the problem of joint perception and motion forecasting in the context of self-driving vehicles.
We propose Net, an end-to-end model that takes as input sensor data, and outputs at each time step object tracks and their future level.
arXiv Detail & Related papers (2020-05-29T17:57:25Z) - Pedestrian Action Anticipation using Contextual Feature Fusion in
Stacked RNNs [19.13270454742958]
We propose a solution for the problem of pedestrian action anticipation at the point of crossing.
Our approach uses a novel stacked RNN architecture in which information collected from various sources, both scene dynamics and visual features, is gradually fused into the network.
arXiv Detail & Related papers (2020-05-13T20:59:37Z) - Probabilistic End-to-End Vehicle Navigation in Complex Dynamic
Environments with Multimodal Sensor Fusion [16.018962965273495]
All-day and all-weather navigation is a critical capability for autonomous driving.
We propose a probabilistic driving model with ultiperception capability utilizing the information from the camera, lidar and radar.
The results suggest that our proposed model outperforms baselines and achieves excellent generalization performance in unseen environments.
arXiv Detail & Related papers (2020-05-05T03:48:10Z) - VTGNet: A Vision-based Trajectory Generation Network for Autonomous
Vehicles in Urban Environments [26.558394047144006]
We develop an uncertainty-aware end-to-end trajectory generation method based on imitation learning.
Under various weather and lighting conditions, our network can reliably generate trajectories in different urban environments.
The proposed method achieves better cross-scene/platform driving results than the state-of-the-art (SOTA) end-to-end control method.
arXiv Detail & Related papers (2020-04-27T06:17:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.