Breaking the chains: extreme value statistics and localization in random
spin chains
- URL: http://arxiv.org/abs/2305.10574v2
- Date: Sun, 12 Nov 2023 16:41:05 GMT
- Title: Breaking the chains: extreme value statistics and localization in random
spin chains
- Authors: Jeanne Colbois and Nicolas Laflorencie
- Abstract summary: We first revisit the 1D many-body Anderson insulator through the lens of extreme value theory.
A many-body-induced chain breaking mechanism is explored numerically, and compared to an analytically solvable toy model.
We observe a sharp "extreme-trivial transition" as $W$ changes, which may coincide with the MBL transition.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite a very good understanding of single-particle Anderson localization in
one-dimensional (1D) disordered systems, many-body effects are still full of
surprises, a famous example being the interaction-driven many-body localization
(MBL) problem, about which much has been written, and perhaps the best is yet
to come. Interestingly enough the non-interacting limit provides a natural
playground to study non-trivial multiparticle physics, offering the possibility
to test some general mechanisms with very large-scale exact diagonalization
simulations. In this work, we first revisit the 1D many-body Anderson insulator
through the lens of extreme value theory, focusing on the extreme polarizations
of the equivalent spin chain model in a random magnetic field. A
many-body-induced chain breaking mechanism is explored numerically, and
compared to an analytically solvable toy model. A unified description, from
weak to large disorder strengths $W$ emerges, where the disorder-dependent
average localization length $\xi(W)$ governs the extreme events leading to
chain breaks. In particular, tails of the local magnetization distributions are
controlled by $\xi(W)$. Remarkably, we also obtain a quantitative understanding
of the full distribution of the extreme polarizations, which is given by a
Fr\'echet-type law. In a second part, we explore finite interaction physics and
the MBL question. For the available system sizes, we numerically quantify the
difference in the extreme value distributions between the interacting problem
and the non-interacting Anderson case. Strikingly, we observe a sharp
"extreme-statistics transition" as $W$ changes, which may coincide with the MBL
transition.
Related papers
- Non-asymptotic bounds for forward processes in denoising diffusions: Ornstein-Uhlenbeck is hard to beat [49.1574468325115]
This paper presents explicit non-asymptotic bounds on the forward diffusion error in total variation (TV)
We parametrise multi-modal data distributions in terms of the distance $R$ to their furthest modes and consider forward diffusions with additive and multiplicative noise.
arXiv Detail & Related papers (2024-08-25T10:28:31Z) - A tractable model of monitored fermions with conserved $\mathrm{U}(1)$ charge [0.0]
We study measurement-induced phases of free fermion systems with U(1) symmetry.
We derive a field theory description for the purity and bipartite entanglement at large space and time scales.
arXiv Detail & Related papers (2024-07-10T20:53:47Z) - Robust spectral $\pi$ pairing in the random-field Floquet quantum Ising
model [44.84660857803376]
We study level pairings in the many-body spectrum of the random-field Floquet quantum Ising model.
The robustness of $pi$ pairings against longitudinal disorder may be useful for quantum information processing.
arXiv Detail & Related papers (2024-01-09T20:37:48Z) - From ergodicity to Stark many-body localization in spin chains with
single-ion anisotropy [0.0]
This study explores the dynamics of a spin chain with $Sgeq 1/2$ within the Majumdar-Ghosh model.
Through the use of exact numerical diagonalization, we unveil that a nearly constant-gradient magnetic field suppress thermalization.
Our findings reveal that the sole presence of single-ion anisotropy is sufficient to prevent thermalization in the system.
arXiv Detail & Related papers (2024-01-06T02:54:42Z) - Ancilla quantum measurements on interacting chains: Sensitivity of entanglement dynamics to the type and concentration of detectors [46.76612530830571]
We consider a quantum many-body lattice system that is coupled to ancillary degrees of freedom (detectors'')
We explore the dynamics of density and of entanglement entropy in the chain, for various values of $rho_a$ and $M$.
arXiv Detail & Related papers (2023-11-21T21:41:11Z) - From Spectral Theorem to Statistical Independence with Application to
System Identification [11.98319841778396]
We provide first quantitative handle on decay rate of finite powers of state transition matrix $|Ak|$.
It is shown that when a stable dynamical system has only one distinct eigenvalue and discrepancy of $n-1$: $|A|$ has a dependence on $n$, resulting dynamics are inseparable.
We show that element-wise error is essentially a variant of well-know Littlewood-Offord problem.
arXiv Detail & Related papers (2023-10-16T15:40:43Z) - Emergence of non-Abelian SU(2) invariance in Abelian frustrated
fermionic ladders [37.69303106863453]
We consider a system of interacting spinless fermions on a two-leg triangular ladder with $pi/2$ magnetic flux per triangular plaquette.
Microscopically, the system exhibits a U(1) symmetry corresponding to the conservation of total fermionic charge, and a discrete $mathbbZ$ symmetry.
At the intersection of the three phases, the system features a critical point with an emergent SU(2) symmetry.
arXiv Detail & Related papers (2023-05-11T15:57:27Z) - Theory of free fermions under random projective measurements [43.04146484262759]
We develop an analytical approach to the study of one-dimensional free fermions subject to random projective measurements of local site occupation numbers.
We derive a non-linear sigma model (NLSM) as an effective field theory of the problem.
arXiv Detail & Related papers (2023-04-06T15:19:33Z) - Universality in Anderson localization on random graphs with varying
connectivity [0.0]
We show that there should be a non-ergodic region above a given value of disorder $W_E$.
Although no separate $W_E$ exists from $W_C$, the length scale at which fully developed ergodicity is found diverges like $|W-W_C|-1$.
The separation of these two scales at the critical point allows for a true non-ergodic, delocalized region.
arXiv Detail & Related papers (2022-05-29T09:47:39Z) - Many-body localization and enhanced non-ergodic sub-diffusive regime in
the presence of random long-range interactions [0.0]
We study many-body localization (MBL) in a one-dimensional system of spinless fermions with a deterministic aperiodic potential.
We demonstrate that MBL survives even for $alpha 1$ and is preceded by a broad non-ergodic sub-diffusive phase.
arXiv Detail & Related papers (2020-10-23T15:38:35Z) - Anisotropy-mediated reentrant localization [62.997667081978825]
We consider a 2d dipolar system, $d=2$, with the generalized dipole-dipole interaction $sim r-a$, and the power $a$ controlled experimentally in trapped-ion or Rydberg-atom systems.
We show that the spatially homogeneous tilt $beta$ of the dipoles giving rise to the anisotropic dipole exchange leads to the non-trivial reentrant localization beyond the locator expansion.
arXiv Detail & Related papers (2020-01-31T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.