A benchmark for computational analysis of animal behavior, using animal-borne tags
- URL: http://arxiv.org/abs/2305.10740v3
- Date: Fri, 27 Sep 2024 19:04:58 GMT
- Title: A benchmark for computational analysis of animal behavior, using animal-borne tags
- Authors: Benjamin Hoffman, Maddie Cusimano, Vittorio Baglione, Daniela Canestrari, Damien Chevallier, Dominic L. DeSantis, Lorène Jeantet, Monique A. Ladds, Takuya Maekawa, Vicente Mata-Silva, Víctor Moreno-González, Anthony Pagano, Eva Trapote, Outi Vainio, Antti Vehkaoja, Ken Yoda, Katherine Zacarian, Ari Friedlaender,
- Abstract summary: We present the Bio-logger Ethogram Benchmark (BEBE), a collection of datasets with behavioral annotations.
We compare the performance of deep and classical machine learning methods for identifying animal behaviors based on bio-logger data.
- Score: 0.6055654308018396
- License:
- Abstract: Animal-borne sensors (`bio-loggers') can record a suite of kinematic and environmental data, which are used to elucidate animal ecophysiology and improve conservation efforts. Machine learning techniques are used for interpreting the large amounts of data recorded by bio-loggers, but there exists no common framework for comparing the different machine learning techniques in this domain. This makes it difficult to, for example, identify patterns in what works well for machine learning-based analysis of bio-logger data. It also makes it difficult to evaluate the effectiveness of novel methods developed by the machine learning community. To address this, we present the Bio-logger Ethogram Benchmark (BEBE), a collection of datasets with behavioral annotations, as well as a modeling task and evaluation metrics. BEBE is to date the largest, most taxonomically diverse, publicly available benchmark of this type. Using BEBE, we compare the performance of deep and classical machine learning methods for identifying animal behaviors based on bio-logger data. As an example usage of BEBE, we test an approach based on self-supervised learning. To apply this approach to animal behavior classification, we adapt a deep neural network pre-trained with 700,000 hours of data collected from human wrist-worn accelerometers. We find that deep neural networks out-perform the classical machine learning methods we tested across all nine datasets in BEBE. We additionally find that the approach based on self-supervised learning out-performs the alternatives we tested, especially in settings when there is a low amount of training data available. In light of this, we are able to make concrete suggestions for designing studies that rely on machine learning to infer behavior from bio-logger data. Datasets and code are available at https://github.com/earthspecies/BEBE.
Related papers
- Automated Behavioral Analysis Using Instance Segmentation [2.043437148047176]
Animal behavior analysis plays a crucial role in various fields, such as life science and biomedical research.
The scarcity of available data and the high cost associated with obtaining a large number of labeled datasets pose significant challenges.
We propose a novel approach that leverages instance segmentation-based transfer learning to address these issues.
arXiv Detail & Related papers (2023-12-12T20:36:36Z) - A Memory Transformer Network for Incremental Learning [64.0410375349852]
We study class-incremental learning, a training setup in which new classes of data are observed over time for the model to learn from.
Despite the straightforward problem formulation, the naive application of classification models to class-incremental learning results in the "catastrophic forgetting" of previously seen classes.
One of the most successful existing methods has been the use of a memory of exemplars, which overcomes the issue of catastrophic forgetting by saving a subset of past data into a memory bank and utilizing it to prevent forgetting when training future tasks.
arXiv Detail & Related papers (2022-10-10T08:27:28Z) - ALBench: A Framework for Evaluating Active Learning in Object Detection [102.81795062493536]
This paper contributes an active learning benchmark framework named as ALBench for evaluating active learning in object detection.
Developed on an automatic deep model training system, this ALBench framework is easy-to-use, compatible with different active learning algorithms, and ensures the same training and testing protocols.
arXiv Detail & Related papers (2022-07-27T07:46:23Z) - Review on Social Behavior Analysis of Laboratory Animals: From
Methodologies to Applications [0.0]
We explore a variety of behaviour detection algorithms, covering traditional vision methods, statistical methods and deep learning methods.
The objective of this work is to provide a thorough investigation of related work, furnishing biologists with a scratch of efficient animal behaviour detection methods.
arXiv Detail & Related papers (2022-06-25T13:40:35Z) - Ten Quick Tips for Deep Learning in Biology [116.78436313026478]
Machine learning is concerned with the development and applications of algorithms that can recognize patterns in data and use them for predictive modeling.
Deep learning has become its own subfield of machine learning.
In the context of biological research, deep learning has been increasingly used to derive novel insights from high-dimensional biological data.
arXiv Detail & Related papers (2021-05-29T21:02:44Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
We propose a novel framework to efficiently test a machine learning model using only a small amount of labeled test data.
The idea is to estimate the metrics of interest for a model-under-test using Bayesian neural network (BNN)
arXiv Detail & Related papers (2021-04-11T12:14:04Z) - Human Activity Analysis and Recognition from Smartphones using Machine
Learning Techniques [0.0]
Human Activity Recognition (HAR) is considered a valuable research topic in the last few decades.
In our paper, we analyze data using machine learning models to recognize human activities.
arXiv Detail & Related papers (2021-03-30T16:46:40Z) - Unsupervised Multi-Modal Representation Learning for Affective Computing
with Multi-Corpus Wearable Data [16.457778420360537]
We propose an unsupervised framework to reduce the reliance on human supervision.
The proposed framework utilizes two stacked convolutional autoencoders to learn latent representations from wearable electrocardiogram (ECG) and electrodermal activity (EDA) signals.
Our method outperforms current state-of-the-art results that have performed arousal detection on the same datasets.
arXiv Detail & Related papers (2020-08-24T22:01:55Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG)
By extracting information from unlabeled data, it might be possible to reach competitive performance with deep neural networks.
arXiv Detail & Related papers (2020-07-31T14:34:47Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
We introduce a parametrized representation of fixed size, which embeds and then aggregates elements from a given input set according to the optimal transport plan between the set and a trainable reference.
Our approach scales to large datasets and allows end-to-end training of the reference, while also providing a simple unsupervised learning mechanism with small computational cost.
arXiv Detail & Related papers (2020-06-22T08:35:58Z) - Machine learning approaches for identifying prey handling activity in
otariid pinnipeds [12.814241588031685]
This paper focuses on the identification of prey handling activity in seals.
Data taken into consideration are streams of 3D accelerometers and depth sensors values collected by devices attached directly on seals.
We propose an automatic model based on Machine Learning (ML) algorithms.
arXiv Detail & Related papers (2020-02-10T15:30:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.