Ahead-of-Time P-Tuning
- URL: http://arxiv.org/abs/2305.10835v1
- Date: Thu, 18 May 2023 09:24:53 GMT
- Title: Ahead-of-Time P-Tuning
- Authors: Daniil Gavrilov, Nikita Balagansky
- Abstract summary: Ahead-of-Time (AoT) P-Tuning is a parameter-efficient fine-tuning method for pre-trained Language Models (LMs)
We evaluate AoT P-Tuning on GLUE and SuperGLUE benchmarking datasets using RoBERTa and DeBERTa models.
Our method enables multi-task inference with a single backbone LM, making it a practical solution for real-world applications.
- Score: 0.2538209532048867
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose Ahead-of-Time (AoT) P-Tuning, a novel
parameter-efficient fine-tuning method for pre-trained Language Models (LMs)
that adds input-dependent bias before each Transformer layer. We evaluate AoT
P-Tuning on GLUE and SuperGLUE benchmarking datasets using RoBERTa and DeBERTa
models, showing that it outperforms BitFit and is comparable or better than
other baseline methods for efficient fine-tuning. Additionally, we assess the
inference overhead of AoT P-Tuning and demonstrate that it introduces
negligible overhead compared to established baseline methods. Our method
enables multi-task inference with a single backbone LM, making it a practical
solution for real-world applications.
Related papers
- Sparse Orthogonal Parameters Tuning for Continual Learning [34.462967722928724]
Continual learning methods based on pre-trained models (PTM) have recently gained attention which adapt to successive downstream tasks without catastrophic forgetting.
We propose a novel yet effective method called SoTU (Sparse Orthogonal Parameters TUning)
arXiv Detail & Related papers (2024-11-05T05:19:09Z) - Fine-Tuning with Divergent Chains of Thought Boosts Reasoning Through Self-Correction in Language Models [63.36637269634553]
We present a novel method of further improving performance by requiring models to compare multiple reasoning chains.
We find that instruction tuning on DCoT datasets boosts the performance of even smaller, and therefore more accessible, language models.
arXiv Detail & Related papers (2024-07-03T15:01:18Z) - A Semantic-based Layer Freezing Approach to Efficient Fine-Tuning of Language Models [32.178931149612644]
Finetuning language models (LMs) is crucial for adapting the models to downstream data and tasks.
Existing work, such as parameter-efficient finetuning (PEFT), often focuses on textithow to finetune but neglects the issue of textitwhere to finetune
arXiv Detail & Related papers (2024-06-17T17:13:08Z) - Comparative Analysis of Different Efficient Fine Tuning Methods of Large Language Models (LLMs) in Low-Resource Setting [0.0]
We try to push the understanding of different fine-tuning strategies for large language models (LLMs)
We compare state-of-the-art methods like vanilla fine-tuning and Pattern-Based Fine-Tuning (PBFT) on pre-trained models across two datasets, COLA and MNLI.
Our findings suggest that these alternative strategies can exhibit out-of-domain generalization comparable to that of vanilla FT and PBFT.
arXiv Detail & Related papers (2024-05-21T20:08:52Z) - Sparse is Enough in Fine-tuning Pre-trained Large Language Models [98.46493578509039]
We propose a gradient-based sparse fine-tuning algorithm, named Sparse Increment Fine-Tuning (SIFT)
We validate its effectiveness on a range of tasks including the GLUE Benchmark and Instruction-tuning.
arXiv Detail & Related papers (2023-12-19T06:06:30Z) - Approximated Prompt Tuning for Vision-Language Pre-trained Models [54.326232586461614]
In vision-language pre-trained models, prompt tuning often requires a large number of learnable tokens to bridge the gap between the pre-training and downstream tasks.
We propose a novel Approximated Prompt Tuning (APT) approach towards efficient VL transfer learning.
arXiv Detail & Related papers (2023-06-27T05:43:47Z) - Strong Baselines for Parameter Efficient Few-Shot Fine-tuning [50.83426196335385]
Few-shot classification (FSC) entails learning novel classes given only a few examples per class after a pre-training (or meta-training) phase.
Recent works have shown that simply fine-tuning a pre-trained Vision Transformer (ViT) on new test classes is a strong approach for FSC.
Fine-tuning ViTs, however, is expensive in time, compute and storage.
This has motivated the design of parameter efficient fine-tuning (PEFT) methods which fine-tune only a fraction of the Transformer's parameters.
arXiv Detail & Related papers (2023-04-04T16:14:39Z) - Rethinking Efficient Tuning Methods from a Unified Perspective [34.67645496324432]
We revisit the design paradigm of PETL and derive a unified framework U-Tuning for parameter-efficient transfer learning.
The U-Tuning framework can simultaneously encompass existing methods and derive new approaches for parameter-efficient transfer learning.
arXiv Detail & Related papers (2023-03-01T17:38:03Z) - Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than
In-Context Learning [81.3514358542452]
Few-shot in-context learning (ICL) incurs substantial computational, memory, and storage costs because it involves processing all of the training examples every time a prediction is made.
parameter-efficient fine-tuning offers an alternative paradigm where a small set of parameters are trained to enable a model to perform the new task.
In this paper, we rigorously compare few-shot ICL and parameter-efficient fine-tuning and demonstrate that the latter offers better accuracy as well as dramatically lower computational costs.
arXiv Detail & Related papers (2022-05-11T17:10:41Z) - DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language
Models [152.29364079385635]
As pre-trained models grow bigger, the fine-tuning process can be time-consuming and computationally expensive.
We propose a framework for resource- and parameter-efficient fine-tuning by leveraging the sparsity prior in both weight updates and the final model weights.
Our proposed framework, dubbed Dually Sparsity-Embedded Efficient Tuning (DSEE), aims to achieve two key objectives: (i) parameter efficient fine-tuning and (ii) resource-efficient inference.
arXiv Detail & Related papers (2021-10-30T03:29:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.