Large Language Models can be Guided to Evade AI-Generated Text Detection
- URL: http://arxiv.org/abs/2305.10847v6
- Date: Wed, 15 May 2024 08:00:09 GMT
- Title: Large Language Models can be Guided to Evade AI-Generated Text Detection
- Authors: Ning Lu, Shengcai Liu, Rui He, Qi Wang, Yew-Soon Ong, Ke Tang,
- Abstract summary: Large language models (LLMs) have shown remarkable performance in various tasks and have been extensively utilized by the public.
We equip LLMs with prompts, rather than relying on an external paraphraser, to evaluate the vulnerability of these detectors.
We propose a novel Substitution-based In-Context example optimization method (SICO) to automatically construct prompts for evading the detectors.
- Score: 40.7707919628752
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have shown remarkable performance in various tasks and have been extensively utilized by the public. However, the increasing concerns regarding the misuse of LLMs, such as plagiarism and spamming, have led to the development of multiple detectors, including fine-tuned classifiers and statistical methods. In this study, we equip LLMs with prompts, rather than relying on an external paraphraser, to evaluate the vulnerability of these detectors. We propose a novel Substitution-based In-Context example Optimization method (SICO) to automatically construct prompts for evading the detectors. SICO is cost-efficient as it requires only 40 human-written examples and a limited number of LLM inferences to generate a prompt. Moreover, once a task-specific prompt has been constructed, it can be universally used against a wide range of detectors. Extensive experiments across three real-world tasks demonstrate that SICO significantly outperforms the paraphraser baselines and enables GPT-3.5 to successfully evade six detectors, decreasing their AUC by 0.5 on average. Furthermore, a comprehensive human evaluation show that the SICO-generated text achieves human-level readability and task completion rates, while preserving high imperceptibility. Finally, we propose an ensemble approach to enhance the robustness of detectors against SICO attack. The code is publicly available at https://github.com/ColinLu50/Evade-GPT-Detector.
Related papers
- DetectRL: Benchmarking LLM-Generated Text Detection in Real-World Scenarios [38.952481877244644]
We present a new benchmark, DetectRL, highlighting that even state-of-the-art (SOTA) detection techniques still underperformed in this task.
Our development of DetectRL reveals the strengths and limitations of current SOTA detectors.
We believe DetectRL could serve as an effective benchmark for assessing detectors in real-world scenarios.
arXiv Detail & Related papers (2024-10-31T09:01:25Z) - Zero-Shot Machine-Generated Text Detection Using Mixture of Large Language Models [35.67613230687864]
Large Language Models (LLMs) are trained at scale and endowed with powerful text-generating abilities.
We propose a new, theoretically grounded approach to combine their respective strengths.
Our experiments, using a variety of generator LLMs, suggest that our method effectively increases the robustness of detection.
arXiv Detail & Related papers (2024-09-11T20:55:12Z) - SORRY-Bench: Systematically Evaluating Large Language Model Safety Refusal Behaviors [64.9938658716425]
Existing evaluations of large language models' (LLMs) ability to recognize and reject unsafe user requests face three limitations.
First, existing methods often use coarse-grained of unsafe topics, and are over-representing some fine-grained topics.
Second, linguistic characteristics and formatting of prompts are often overlooked, like different languages, dialects, and more -- which are only implicitly considered in many evaluations.
Third, existing evaluations rely on large LLMs for evaluation, which can be expensive.
arXiv Detail & Related papers (2024-06-20T17:56:07Z) - SeqXGPT: Sentence-Level AI-Generated Text Detection [62.3792779440284]
We introduce a sentence-level detection challenge by synthesizing documents polished with large language models (LLMs)
We then propose textbfSequence textbfX (Check) textbfGPT, a novel method that utilizes log probability lists from white-box LLMs as features for sentence-level AIGT detection.
arXiv Detail & Related papers (2023-10-13T07:18:53Z) - How Reliable Are AI-Generated-Text Detectors? An Assessment Framework
Using Evasive Soft Prompts [14.175243473740727]
We propose a novel approach that can prompt any PLM to generate text that evades high-performing detectors.
The proposed approach suggests a universal evasive prompt, a novel type of soft prompt, which guides PLMs in producing "human-like" text that can mislead the detectors.
We conduct extensive experiments to evaluate the efficacy of the evasive soft prompts in their evasion of state-of-the-art detectors.
arXiv Detail & Related papers (2023-10-08T09:53:46Z) - OUTFOX: LLM-Generated Essay Detection Through In-Context Learning with
Adversarially Generated Examples [44.118047780553006]
OUTFOX is a framework that improves the robustness of LLM-generated-text detectors by allowing both the detector and the attacker to consider each other's output.
Experiments show that the proposed detector improves the detection performance on the attacker-generated texts by up to +41.3 points F1-score.
The detector shows a state-of-the-art detection performance: up to 96.9 points F1-score, beating existing detectors on non-attacked texts.
arXiv Detail & Related papers (2023-07-21T17:40:47Z) - Red Teaming Language Model Detectors with Language Models [114.36392560711022]
Large language models (LLMs) present significant safety and ethical risks if exploited by malicious users.
Recent works have proposed algorithms to detect LLM-generated text and protect LLMs.
We study two types of attack strategies: 1) replacing certain words in an LLM's output with their synonyms given the context; 2) automatically searching for an instructional prompt to alter the writing style of the generation.
arXiv Detail & Related papers (2023-05-31T10:08:37Z) - Paraphrasing evades detectors of AI-generated text, but retrieval is an
effective defense [56.077252790310176]
We present a paraphrase generation model (DIPPER) that can paraphrase paragraphs, condition on surrounding context, and control lexical diversity and content reordering.
Using DIPPER to paraphrase text generated by three large language models (including GPT3.5-davinci-003) successfully evades several detectors, including watermarking.
We introduce a simple defense that relies on retrieving semantically-similar generations and must be maintained by a language model API provider.
arXiv Detail & Related papers (2023-03-23T16:29:27Z) - Can AI-Generated Text be Reliably Detected? [54.670136179857344]
Unregulated use of LLMs can potentially lead to malicious consequences such as plagiarism, generating fake news, spamming, etc.
Recent works attempt to tackle this problem either using certain model signatures present in the generated text outputs or by applying watermarking techniques.
In this paper, we show that these detectors are not reliable in practical scenarios.
arXiv Detail & Related papers (2023-03-17T17:53:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.