LLM-CXR: Instruction-Finetuned LLM for CXR Image Understanding and Generation
- URL: http://arxiv.org/abs/2305.11490v5
- Date: Mon, 18 Mar 2024 03:41:09 GMT
- Title: LLM-CXR: Instruction-Finetuned LLM for CXR Image Understanding and Generation
- Authors: Suhyeon Lee, Won Jun Kim, Jinho Chang, Jong Chul Ye,
- Abstract summary: vision-language alignment in LLMs is actively being researched to enable multimodal reasoning and visual IO.
We develop a method for instruction-tuning an LLM only on text to gain vision-language capabilities for medical images.
Our model, LLM-CXR, trained in this approach shows better image-text alignment in both CXR understanding and generation tasks.
- Score: 51.08810811457617
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Following the impressive development of LLMs, vision-language alignment in LLMs is actively being researched to enable multimodal reasoning and visual IO. This direction of research is particularly relevant to medical imaging because medical image analysis and generation consist of reasoning based on a combination of visual features and prior knowledge. Many recent works have focused on training adapter networks that serve as an information bridge between image processing networks and LLMs; but presumably, in order to achieve maximum reasoning potential of LLMs on visual information as well, visual and language features should be allowed to interact more freely. This is especially important in the medical domain because understanding and generating medical images such as chest X-rays (CXR) require not only accurate visual and language-based reasoning but also a more intimate mapping between the two modalities. Thus, taking inspiration from previous work on the transformer and VQ-GAN combination for bidirectional image and text generation, we build upon this approach and develop a method for instruction-tuning an LLM pre-trained only on text to gain vision-language capabilities for medical images. Specifically, we leverage a pretrained LLM's existing question-answering and instruction-following abilities to teach it to understand visual inputs by instructing it to answer questions about image inputs and, symmetrically, output both text and image responses appropriate to a given query by tuning the LLM with diverse tasks that encompass image-based text-generation and text-based image-generation. We show that our model, LLM-CXR, trained in this approach shows better image-text alignment in both CXR understanding and generation tasks while being smaller in size compared to previously developed models that perform a narrower range of tasks. The code is at https://github.com/hyn2028/llm-cxr.
Related papers
- Instruction Tuning-free Visual Token Complement for Multimodal LLMs [51.138806401996696]
multimodal large language models (MLLMs) have promised an elegant bridge between vision and language.
We propose a Visual Token Complement framework (VTC) that helps MLLMs regain the missing visual features.
Our VTC integrates text-to-image generation as a guide to identifying the text-irrelevant features, and a visual selector is then developed to generate complementary visual tokens.
arXiv Detail & Related papers (2024-08-09T12:13:01Z) - Rethinking Visual Prompting for Multimodal Large Language Models with External Knowledge [76.45868419402265]
multimodal large language models (MLLMs) have made significant strides by training on vast high-quality image-text datasets.
However, the inherent difficulty in explicitly conveying fine-grained or spatially dense information in text, such as masks, poses a challenge for MLLMs.
This paper proposes a new visual prompt approach to integrate fine-grained external knowledge, gleaned from specialized vision models, into MLLMs.
arXiv Detail & Related papers (2024-07-05T17:43:30Z) - Draw-and-Understand: Leveraging Visual Prompts to Enable MLLMs to Comprehend What You Want [58.091825321168514]
We introduce the Draw-and-Understand project: a new model, a multi-domain dataset, and a challenging benchmark for visual prompting.
Specifically, we propose a new end-to-end trained Multimodal Large Language Model (MLLM) that connects a vision encoder, a visual prompt encoder and an LLM.
To advance visual prompting research for MLLMs, we introduce MDVP-Data and MDVP-Bench.
arXiv Detail & Related papers (2024-03-29T16:26:20Z) - Aligned with LLM: a new multi-modal training paradigm for encoding fMRI
activity in visual cortex [4.57590454144072]
Recently, there has been a surge in the popularity of pre trained large language models (LLMs)
This paper proposes a new multi-modal training paradigm, aligning with LLM, encoding fMRI activity in visual cortex.
arXiv Detail & Related papers (2024-01-08T12:30:23Z) - MedXChat: A Unified Multimodal Large Language Model Framework towards CXRs Understanding and Generation [28.497591315598402]
Multimodal Large Language Models (MLLMs) have shown success in various general image processing tasks.
This study investigates the potential of MLLMs in improving the understanding and generation of Chest X-Rays (CXRs)
arXiv Detail & Related papers (2023-12-04T06:40:12Z) - Frozen Transformers in Language Models Are Effective Visual Encoder Layers [26.759544759745648]
Large language models (LLMs) are surprisingly strong encoders for purely visual tasks in the absence of language.
Our work pushes the boundaries of leveraging LLMs for computer vision tasks.
We propose the information filtering hypothesis to explain the effectiveness of pre-trained LLMs in visual encoding.
arXiv Detail & Related papers (2023-10-19T17:59:05Z) - BuboGPT: Enabling Visual Grounding in Multi-Modal LLMs [101.50522135049198]
BuboGPT is a multi-modal LLM with visual grounding that can perform cross-modal interaction between vision, audio and language.
Our contributions are two-fold: 1) An off-the-shelf visual grounding module based on SAM that extracts entities in a sentence and find corresponding masks in the image.
Our experiments show that BuboGPT achieves impressive multi-modality understanding and visual grounding abilities during the interaction with human.
arXiv Detail & Related papers (2023-07-17T15:51:47Z) - SPAE: Semantic Pyramid AutoEncoder for Multimodal Generation with Frozen
LLMs [124.29233620842462]
We introduce SPAE for enabling frozen LLMs to perform both understanding and generation tasks involving non-linguistic modalities such as images or videos.
The resulting lexical tokens capture both the semantic meaning and the fine-grained details needed for visual reconstruction.
Our method marks the first successful attempt to enable a frozen LLM to generate image content while surpassing state-of-the-art performance in image understanding tasks, under the same setting, by over 25%.
arXiv Detail & Related papers (2023-06-30T17:59:07Z) - Leveraging Large Language Models for Scalable Vector Graphics-Driven Image Understanding [46.042197741423365]
Large language models (LLMs) have made significant advancements in natural language understanding.
This work investigates if it is possible for the LLM to understand images as well.
arXiv Detail & Related papers (2023-06-09T17:57:01Z) - Towards Versatile and Efficient Visual Knowledge Integration into
Pre-trained Language Models with Cross-Modal Adapters [16.44174900423759]
We propose a new plug-and-play module, X-adapter, to leverage the aligned visual and textual knowledge learned in pre-trained vision-language models.
Our method can significantly improve the performance on object-color reasoning and natural language understanding tasks.
arXiv Detail & Related papers (2023-05-12T10:08:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.