Recouple Event Field via Probabilistic Bias for Event Extraction
- URL: http://arxiv.org/abs/2305.11498v1
- Date: Fri, 19 May 2023 07:55:37 GMT
- Title: Recouple Event Field via Probabilistic Bias for Event Extraction
- Authors: Xingyu Bai, Taiqiang Wu, Han Guo, Zhe Zhao, Xuefeng Yang, Jiayi Li,
Weijie Liu, Qi Ju, Weigang Guo, Yujiu Yang
- Abstract summary: Event Extraction aims to identify and classify event triggers and arguments from event mentions.
Existing PLM-based methods ignore the information of trigger/argument fields.
We propose a Probabilistic reCoupling model enhanced Event extraction framework.
- Score: 22.601552863742523
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Event Extraction (EE), aiming to identify and classify event triggers and
arguments from event mentions, has benefited from pre-trained language models
(PLMs). However, existing PLM-based methods ignore the information of
trigger/argument fields, which is crucial for understanding event schemas. To
this end, we propose a Probabilistic reCoupling model enhanced Event extraction
framework (ProCE). Specifically, we first model the syntactic-related event
fields as probabilistic biases, to clarify the event fields from ambiguous
entanglement. Furthermore, considering multiple occurrences of the same
triggers/arguments in EE, we explore probabilistic interaction strategies among
multiple fields of the same triggers/arguments, to recouple the corresponding
clarified distributions and capture more latent information fields. Experiments
on EE datasets demonstrate the effectiveness and generalization of our proposed
approach.
Related papers
- Beyond Single-Event Extraction: Towards Efficient Document-Level Multi-Event Argument Extraction [19.51890490853855]
We propose a multiple-event argument extraction model DEEIA.
It is capable of extracting arguments from all events within a document simultaneously.
Our method achieves new state-of-the-art performance on four public datasets.
arXiv Detail & Related papers (2024-05-03T07:04:35Z) - MAVEN-Arg: Completing the Puzzle of All-in-One Event Understanding Dataset with Event Argument Annotation [104.6065882758648]
MAVEN-Arg is the first all-in-one dataset supporting event detection, event argument extraction, and event relation extraction.
As an EAE benchmark, MAVEN-Arg offers three main advantages: (1) a comprehensive schema covering 162 event types and 612 argument roles, all with expert-written definitions and examples; (2) a large data scale, containing 98,591 events and 290,613 arguments obtained with laborious human annotation; and (3) the exhaustive annotation supporting all task variants of EAE.
arXiv Detail & Related papers (2023-11-15T16:52:14Z) - Type-aware Decoding via Explicitly Aggregating Event Information for
Document-level Event Extraction [11.432496741340334]
Document-level event extraction faces two main challenges: arguments-scattering and multi-event.
This paper proposes a novel-based Explicitly Aggregating(SEA) model to address these limitations.
SEA aggregates event information into event type and role representations, enabling the decoding of event records based on specific type-aware representations.
arXiv Detail & Related papers (2023-10-16T15:10:42Z) - PESE: Event Structure Extraction using Pointer Network based
Encoder-Decoder Architecture [0.0]
Event extraction (EE) aims to find the events and event-related argument information from the text and represent them in a structured format.
In this paper, we represent each event record in a unique format that contains trigger phrase, trigger type, argument phrase, and corresponding role information.
Our proposed pointer network-based encoder-decoder model generates an event in each step by exploiting the interactions among event participants.
arXiv Detail & Related papers (2022-11-22T10:36:56Z) - EA$^2$E: Improving Consistency with Event Awareness for Document-Level
Argument Extraction [52.43978926985928]
We introduce the Event-Aware Argument Extraction (EA$2$E) model with augmented context for training and inference.
Experiment results on WIKIEVENTS and ACE2005 datasets demonstrate the effectiveness of EA$2$E.
arXiv Detail & Related papers (2022-05-30T04:33:51Z) - Event Data Association via Robust Model Fitting for Event-based Object Tracking [66.05728523166755]
We propose a novel Event Data Association (called EDA) approach to explicitly address the event association and fusion problem.
The proposed EDA seeks for event trajectories that best fit the event data, in order to perform unifying data association and information fusion.
The experimental results show the effectiveness of EDA under challenging scenarios, such as high speed, motion blur, and high dynamic range conditions.
arXiv Detail & Related papers (2021-10-25T13:56:00Z) - Query and Extract: Refining Event Extraction as Type-oriented Binary
Decoding [51.57864297948228]
We propose a novel event extraction framework that takes event types and argument roles as natural language queries.
Our framework benefits from the attention mechanisms to better capture the semantic correlation between the event types or argument roles and the input text.
arXiv Detail & Related papers (2021-10-14T15:49:40Z) - Learning Constraints and Descriptive Segmentation for Subevent Detection [74.48201657623218]
We propose an approach to learning and enforcing constraints that capture dependencies between subevent detection and EventSeg prediction.
We adopt Rectifier Networks for constraint learning and then convert the learned constraints to a regularization term in the loss function of the neural model.
arXiv Detail & Related papers (2021-09-13T20:50:37Z) - CasEE: A Joint Learning Framework with Cascade Decoding for Overlapping
Event Extraction [9.300138832652658]
Event extraction (EE) is a crucial information extraction task that aims to extract event information in texts.
This work systematically studies the realistic event overlapping problem, where a word may serve as triggers with several types or arguments with different roles.
We propose a novel joint learning framework with cascade decoding for overlapping event extraction, termed as CasEE.
arXiv Detail & Related papers (2021-07-04T10:01:55Z) - Unsupervised Label-aware Event Trigger and Argument Classification [73.86358632937372]
We propose an unsupervised event extraction pipeline, which first identifies events with available tools (e.g., SRL) and then automatically maps them to pre-defined event types.
We leverage pre-trained language models to contextually represent pre-defined types for both event triggers and arguments.
We successfully map 83% of the triggers and 54% of the arguments to the correct types, almost doubling the performance of previous zero-shot approaches.
arXiv Detail & Related papers (2020-12-30T17:47:24Z) - Document-level Event Extraction with Efficient End-to-end Learning of
Cross-event Dependencies [37.96254956540803]
We propose an end-to-end model leveraging Deep Value Networks (DVN), a structured prediction algorithm, to efficiently capture cross-event dependencies for document-level event extraction.
Our approach achieves comparable performance to CRF-based models on ACE05, while enjoys significantly higher computational efficiency.
arXiv Detail & Related papers (2020-10-24T05:28:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.