Persian Typographical Error Type Detection Using Deep Neural Networks on Algorithmically-Generated Misspellings
- URL: http://arxiv.org/abs/2305.11731v5
- Date: Sun, 5 May 2024 13:44:10 GMT
- Title: Persian Typographical Error Type Detection Using Deep Neural Networks on Algorithmically-Generated Misspellings
- Authors: Mohammad Dehghani, Heshaam Faili,
- Abstract summary: Typographical Error Type Detection in Persian is a relatively understudied area.
This paper presents a compelling approach for detecting typographical errors in Persian texts.
The outcomes of our final method proved to be highly competitive, achieving an accuracy of 97.62%, precision of 98.83%, recall of 98.61%, and surpassing others in terms of speed.
- Score: 2.2503811834154104
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Spelling correction is a remarkable challenge in the field of natural language processing. The objective of spelling correction tasks is to recognize and rectify spelling errors automatically. The development of applications that can effectually diagnose and correct Persian spelling and grammatical errors has become more important in order to improve the quality of Persian text. The Typographical Error Type Detection in Persian is a relatively understudied area. Therefore, this paper presents a compelling approach for detecting typographical errors in Persian texts. Our work includes the presentation of a publicly available dataset called FarsTypo, which comprises 3.4 million words arranged in chronological order and tagged with their corresponding part-of-speech. These words cover a wide range of topics and linguistic styles. We develop an algorithm designed to apply Persian-specific errors to a scalable portion of these words, resulting in a parallel dataset of correct and incorrect words. By leveraging FarsTypo, we establish a strong foundation and conduct a thorough comparison of various methodologies employing different architectures. Additionally, we introduce a groundbreaking Deep Sequential Neural Network that utilizes both word and character embeddings, along with bidirectional LSTM layers, for token classification aimed at detecting typographical errors across 51 distinct classes. Our approach is contrasted with highly advanced industrial systems that, unlike this study, have been developed using a diverse range of resources. The outcomes of our final method proved to be highly competitive, achieving an accuracy of 97.62%, precision of 98.83%, recall of 98.61%, and surpassing others in terms of speed.
Related papers
- Subtle Errors Matter: Preference Learning via Error-injected Self-editing [59.405145971637204]
We propose a novel preference learning framework called eRror-Injected Self-Editing (RISE)
RISE injects predefined subtle errors into partial tokens of correct solutions to construct hard pairs for error mitigation.
Experiments validate the effectiveness of RISE, with preference learning on Qwen2-7B-Instruct yielding notable improvements of 3.0% on GSM8K and 7.9% on MATH.
arXiv Detail & Related papers (2024-10-09T07:43:38Z) - A Comprehensive Approach to Misspelling Correction with BERT and Levenshtein Distance [1.7000578646860536]
Spelling mistakes, among the most prevalent writing errors, are frequently encountered due to various factors.
This research aims to identify and rectify diverse spelling errors in text using neural networks.
arXiv Detail & Related papers (2024-07-24T16:07:11Z) - Automatic Real-word Error Correction in Persian Text [0.0]
This paper introduces a cutting-edge approach for precise and efficient real-word error correction in Persian text.
We employ semantic analysis, feature selection, and advanced classifiers to enhance error detection and correction efficacy.
Our method achieves an impressive F-measure of 96.6% in the detection phase and an accuracy of 99.1% in the correction phase.
arXiv Detail & Related papers (2024-07-20T07:50:52Z) - PERCORE: A Deep Learning-Based Framework for Persian Spelling Correction with Phonetic Analysis [0.0]
This research introduces a state-of-the-art Persian spelling correction system that seamlessly integrates deep learning techniques with phonetic analysis.
Our methodology effectively combines deep contextual analysis with phonetic insights, adeptly correcting both non-word and real-word spelling errors.
A thorough evaluation on a wide-ranging dataset confirms our system's superior performance compared to existing methods.
arXiv Detail & Related papers (2024-07-20T07:41:04Z) - Understanding and Mitigating Classification Errors Through Interpretable
Token Patterns [58.91023283103762]
Characterizing errors in easily interpretable terms gives insight into whether a classifier is prone to making systematic errors.
We propose to discover those patterns of tokens that distinguish correct and erroneous predictions.
We show that our method, Premise, performs well in practice.
arXiv Detail & Related papers (2023-11-18T00:24:26Z) - MISMATCH: Fine-grained Evaluation of Machine-generated Text with
Mismatch Error Types [68.76742370525234]
We propose a new evaluation scheme to model human judgments in 7 NLP tasks, based on the fine-grained mismatches between a pair of texts.
Inspired by the recent efforts in several NLP tasks for fine-grained evaluation, we introduce a set of 13 mismatch error types.
We show that the mismatch errors between the sentence pairs on the held-out datasets from 7 NLP tasks align well with the human evaluation.
arXiv Detail & Related papers (2023-06-18T01:38:53Z) - SpellMapper: A non-autoregressive neural spellchecker for ASR
customization with candidate retrieval based on n-gram mappings [76.87664008338317]
Contextual spelling correction models are an alternative to shallow fusion to improve automatic speech recognition.
We propose a novel algorithm for candidate retrieval based on misspelled n-gram mappings.
Experiments on Spoken Wikipedia show 21.4% word error rate improvement compared to a baseline ASR system.
arXiv Detail & Related papers (2023-06-04T10:00:12Z) - Correcting Real-Word Spelling Errors: A New Hybrid Approach [1.5469452301122175]
A new hybrid approach is proposed which relies on statistical and syntactic knowledge to detect and correct real-word errors.
The model can prove to be more practical than some other models, such as WordNet-based method of Hirst and Budanitsky and fixed windows size method of Wilcox-O'Hearn and Hirst.
arXiv Detail & Related papers (2023-02-09T06:03:11Z) - A transformer-based spelling error correction framework for Bangla and resource scarce Indic languages [2.5874041837241304]
Spelling error correction is the task of identifying and rectifying misspelled words in texts.
Earlier efforts on spelling error correction in Bangla and resource-scarce Indic languages focused on rule-based, statistical, and machine learning-based methods.
We propose a novel detector-purificator-corrector, DPC based on denoising transformers by addressing previous issues.
arXiv Detail & Related papers (2022-11-07T17:59:05Z) - Improving the Efficiency of Grammatical Error Correction with Erroneous
Span Detection and Correction [106.63733511672721]
We propose a novel language-independent approach to improve the efficiency for Grammatical Error Correction (GEC) by dividing the task into two subtasks: Erroneous Span Detection ( ESD) and Erroneous Span Correction (ESC)
ESD identifies grammatically incorrect text spans with an efficient sequence tagging model. ESC leverages a seq2seq model to take the sentence with annotated erroneous spans as input and only outputs the corrected text for these spans.
Experiments show our approach performs comparably to conventional seq2seq approaches in both English and Chinese GEC benchmarks with less than 50% time cost for inference.
arXiv Detail & Related papers (2020-10-07T08:29:11Z) - On the Robustness of Language Encoders against Grammatical Errors [66.05648604987479]
We collect real grammatical errors from non-native speakers and conduct adversarial attacks to simulate these errors on clean text data.
Results confirm that the performance of all tested models is affected but the degree of impact varies.
arXiv Detail & Related papers (2020-05-12T11:01:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.