Multimodal Web Navigation with Instruction-Finetuned Foundation Models
- URL: http://arxiv.org/abs/2305.11854v4
- Date: Sun, 25 Feb 2024 16:21:00 GMT
- Title: Multimodal Web Navigation with Instruction-Finetuned Foundation Models
- Authors: Hiroki Furuta, Kuang-Huei Lee, Ofir Nachum, Yutaka Matsuo, Aleksandra
Faust, Shixiang Shane Gu, Izzeddin Gur
- Abstract summary: We study data-driven offline training for web agents with vision-language foundation models.
We propose an instruction-following multimodal agent, WebGUM, that observes both webpage screenshots and HTML pages.
We empirically demonstrate this recipe improves the agent's ability of grounded multimodal perception, HTML comprehension, and multi-step reasoning.
- Score: 99.14209521903854
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The progress of autonomous web navigation has been hindered by the dependence
on billions of exploratory interactions via online reinforcement learning, and
domain-specific model designs that make it difficult to leverage generalization
from rich out-of-domain data. In this work, we study data-driven offline
training for web agents with vision-language foundation models. We propose an
instruction-following multimodal agent, WebGUM, that observes both webpage
screenshots and HTML pages and outputs web navigation actions, such as click
and type. WebGUM is trained by jointly finetuning an instruction-finetuned
language model and a vision encoder with temporal and local perception on a
large corpus of demonstrations. We empirically demonstrate this recipe improves
the agent's ability of grounded multimodal perception, HTML comprehension, and
multi-step reasoning, outperforming prior works by a significant margin. On the
MiniWoB, we improve over the previous best offline methods by more than 45.8%,
even outperforming online-finetuned SoTA, humans, and GPT-4-based agent. On the
WebShop benchmark, our 3-billion-parameter model achieves superior performance
to the existing SoTA, PaLM-540B. Furthermore, WebGUM exhibits strong positive
transfer to the real-world planning tasks on the Mind2Web. We also collect 347K
high-quality demonstrations using our trained models, 38 times larger than
prior work, and make them available to promote future research in this
direction.
Related papers
- OpenWebVoyager: Building Multimodal Web Agents via Iterative Real-World Exploration, Feedback and Optimization [66.22117723598872]
We introduce an open-source framework designed to facilitate the development of multimodal web agent.
We first train the base model with imitation learning to gain the basic abilities.
We then let the agent explore the open web and collect feedback on its trajectories.
arXiv Detail & Related papers (2024-10-25T15:01:27Z) - Large Language Models Can Self-Improve At Web Agent Tasks [37.17001438055515]
Large language models (LLMs) have recently demonstrated some capability to navigate novel environments as agents in a zero-shot or few-shot fashion.
We explore the extent to which LLMs can self-improve their performance as agents in long-horizon tasks in a complex environment using the WebArena benchmark.
We achieve a 31% improvement in task completion rate over the base model on the WebArena benchmark through a self-improvement procedure.
arXiv Detail & Related papers (2024-05-30T17:52:36Z) - Search Beyond Queries: Training Smaller Language Models for Web Interactions via Reinforcement Learning [2.2973978268630852]
This work introduces a Grounded Language Agent for Intelligent Web Interactions, called GLAINTEL.
Drawing upon advancements in language modeling and reinforcement learning, GLAINTEL investigates the efficacy of transformer-based models in enhancing the search capabilities of interactive web environments.
This work focuses on training smaller language models as agents across various scenarios, systematically evaluating the impact of human demonstrations on the training process.
arXiv Detail & Related papers (2024-04-16T20:15:32Z) - WebVoyager: Building an End-to-End Web Agent with Large Multimodal Models [65.18602126334716]
Existing web agents typically only handle one input modality and are evaluated only in simplified web simulators or static web snapshots.
We introduce WebVoyager, an innovative Large Multimodal Model (LMM) powered web agent that can complete user instructions end-to-end by interacting with real-world websites.
We show that WebVoyager achieves a 59.1% task success rate on our benchmark, significantly surpassing the performance of both GPT-4 (All Tools) and the WebVoyager (text-only) setups.
arXiv Detail & Related papers (2024-01-25T03:33:18Z) - AllTogether: Investigating the Efficacy of Spliced Prompt for Web
Navigation using Large Language Models [2.234037966956278]
We introduce AllTogether, a standardized prompt template that enhances task context representation.
We evaluate the efficacy of this approach through prompt learning and instruction finetuning based on open-source Llama-2 and API-accessible GPT models.
arXiv Detail & Related papers (2023-10-20T11:10:14Z) - eP-ALM: Efficient Perceptual Augmentation of Language Models [70.47962271121389]
We propose to direct effort to efficient adaptations of existing models, and propose to augment Language Models with perception.
Existing approaches for adapting pretrained models for vision-language tasks still rely on several key components that hinder their efficiency.
We show that by freezing more than 99% of total parameters, training only one linear projection layer, and prepending only one trainable token, our approach (dubbed eP-ALM) significantly outperforms other baselines on VQA and Captioning.
arXiv Detail & Related papers (2023-03-20T19:20:34Z) - Understanding HTML with Large Language Models [73.92747433749271]
Large language models (LLMs) have shown exceptional performance on a variety of natural language tasks.
We contribute HTML understanding models (fine-tuned LLMs) and an in-depth analysis of their capabilities under three tasks.
We show that LLMs pretrained on standard natural language corpora transfer remarkably well to HTML understanding tasks.
arXiv Detail & Related papers (2022-10-08T07:27:17Z) - GROWN+UP: A Graph Representation Of a Webpage Network Utilizing
Pre-training [0.2538209532048866]
We introduce an agnostic deep graph neural network feature extractor that can ingest webpage structures, pre-train self-supervised on massive unlabeled data, and fine-tune to arbitrary tasks on webpages effectually.
We show that our pre-trained model achieves state-of-the-art results using multiple datasets on two very different benchmarks: webpage boilerplate removal and genre classification.
arXiv Detail & Related papers (2022-08-03T13:37:27Z) - PaLM: Scaling Language Modeling with Pathways [180.69584031908113]
We trained a 540-billion parameter, densely activated, Transformer language model, which we call Pathways Language Model PaLM.
We trained PaLM on 6144 TPU v4 chips using Pathways, a new ML system which enables highly efficient training across multiple TPU Pods.
We demonstrate continued benefits of scaling by achieving state-of-the-art few-shot learning results on hundreds of language understanding and generation benchmarks.
arXiv Detail & Related papers (2022-04-05T16:11:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.