GELU Activation Function in Deep Learning: A Comprehensive Mathematical
Analysis and Performance
- URL: http://arxiv.org/abs/2305.12073v2
- Date: Tue, 1 Aug 2023 08:47:59 GMT
- Title: GELU Activation Function in Deep Learning: A Comprehensive Mathematical
Analysis and Performance
- Authors: Minhyeok Lee
- Abstract summary: We investigate the differentiability, boundedness, stationarity, and smoothness properties of the GELU activation function.
Our results demonstrate the superior performance of GELU compared to other activation functions.
- Score: 2.458437232470188
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Selecting the most suitable activation function is a critical factor in the
effectiveness of deep learning models, as it influences their learning
capacity, stability, and computational efficiency. In recent years, the
Gaussian Error Linear Unit (GELU) activation function has emerged as a dominant
method, surpassing traditional functions such as the Rectified Linear Unit
(ReLU) in various applications. This study presents a rigorous mathematical
investigation of the GELU activation function, exploring its differentiability,
boundedness, stationarity, and smoothness properties in detail. Additionally,
we conduct an extensive experimental comparison of the GELU function against a
broad range of alternative activation functions, utilizing a residual
convolutional network trained on the CIFAR-10, CIFAR-100, and STL-10 datasets
as the empirical testbed. Our results demonstrate the superior performance of
GELU compared to other activation functions, establishing its suitability for a
wide range of deep learning applications. This comprehensive study contributes
to a more profound understanding of the underlying mathematical properties of
GELU and provides valuable insights for practitioners aiming to select
activation functions that optimally align with their specific objectives and
constraints in deep learning.
Related papers
- Sparsing Law: Towards Large Language Models with Greater Activation Sparsity [62.09617609556697]
Activation sparsity denotes the existence of substantial weakly-contributed elements within activation outputs that can be eliminated.
We propose PPL-$p%$ sparsity, a precise and performance-aware activation sparsity metric.
We show that ReLU is more efficient as the activation function than SiLU and can leverage more training data to improve activation sparsity.
arXiv Detail & Related papers (2024-11-04T17:59:04Z) - Active Learning for Derivative-Based Global Sensitivity Analysis with Gaussian Processes [70.66864668709677]
We consider the problem of active learning for global sensitivity analysis of expensive black-box functions.
Since function evaluations are expensive, we use active learning to prioritize experimental resources where they yield the most value.
We propose novel active learning acquisition functions that directly target key quantities of derivative-based global sensitivity measures.
arXiv Detail & Related papers (2024-07-13T01:41:12Z) - A Method on Searching Better Activation Functions [15.180864683908878]
We propose Entropy-based Activation Function Optimization (EAFO) methodology for designing static activation functions in deep neural networks.
We derive a novel activation function from ReLU, known as Correction Regularized ReLU (CRReLU)
arXiv Detail & Related papers (2024-05-19T03:48:05Z) - APALU: A Trainable, Adaptive Activation Function for Deep Learning
Networks [0.0]
We introduce a novel trainable activation function, adaptive piecewise approximated activation linear unit (APALU)
Experiments reveal significant improvements over widely used activation functions for different tasks.
APALU achieves 100% accuracy on a sign language recognition task with a limited dataset.
arXiv Detail & Related papers (2024-02-13T06:18:42Z) - ReLU$^2$ Wins: Discovering Efficient Activation Functions for Sparse
LLMs [91.31204876440765]
We introduce a general method that defines neuron activation through neuron output magnitudes and a tailored magnitude threshold.
To find the most efficient activation function for sparse computation, we propose a systematic framework.
We conduct thorough experiments on LLMs utilizing different activation functions, including ReLU, SwiGLU, ReGLU, and ReLU$2$.
arXiv Detail & Related papers (2024-02-06T08:45:51Z) - Learning Objective-Specific Active Learning Strategies with Attentive
Neural Processes [72.75421975804132]
Learning Active Learning (LAL) suggests to learn the active learning strategy itself, allowing it to adapt to the given setting.
We propose a novel LAL method for classification that exploits symmetry and independence properties of the active learning problem.
Our approach is based on learning from a myopic oracle, which gives our model the ability to adapt to non-standard objectives.
arXiv Detail & Related papers (2023-09-11T14:16:37Z) - Stochastic Adaptive Activation Function [1.9199289015460212]
This study proposes a simple yet effective activation function that facilitates different thresholds and adaptive activations according to the positions of units and the contexts of inputs.
Experimental analysis demonstrates that our activation function can provide the benefits of more accurate prediction and earlier convergence in many deep learning applications.
arXiv Detail & Related papers (2022-10-21T01:57:25Z) - Offline Reinforcement Learning with Differentiable Function
Approximation is Provably Efficient [65.08966446962845]
offline reinforcement learning, which aims at optimizing decision-making strategies with historical data, has been extensively applied in real-life applications.
We take a step by considering offline reinforcement learning with differentiable function class approximation (DFA)
Most importantly, we show offline differentiable function approximation is provably efficient by analyzing the pessimistic fitted Q-learning algorithm.
arXiv Detail & Related papers (2022-10-03T07:59:42Z) - Transformers with Learnable Activation Functions [63.98696070245065]
We use Rational Activation Function (RAF) to learn optimal activation functions during training according to input data.
RAF opens a new research direction for analyzing and interpreting pre-trained models according to the learned activation functions.
arXiv Detail & Related papers (2022-08-30T09:47:31Z) - Discovering Parametric Activation Functions [17.369163074697475]
This paper proposes a technique for customizing activation functions automatically, resulting in reliable improvements in performance.
Experiments with four different neural network architectures on the CIFAR-10 and CIFAR-100 image classification datasets show that this approach is effective.
arXiv Detail & Related papers (2020-06-05T00:25:33Z) - Evolutionary Optimization of Deep Learning Activation Functions [15.628118691027328]
We show that evolutionary algorithms can discover novel activation functions that outperform the Rectified Linear Unit (ReLU)
replacing ReLU with evolved activation functions results in statistically significant increases in network accuracy.
These novel activation functions are shown to generalize, achieving high performance across tasks.
arXiv Detail & Related papers (2020-02-17T19:54:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.