Vocabulary for Universal Approximation: A Linguistic Perspective of Mapping Compositions
- URL: http://arxiv.org/abs/2305.12205v2
- Date: Thu, 23 May 2024 08:38:10 GMT
- Title: Vocabulary for Universal Approximation: A Linguistic Perspective of Mapping Compositions
- Authors: Yongqiang Cai,
- Abstract summary: We prove the existence of a finite emphvocabulary $V=phi_i: mathbbRd to mathbbRd to mathbbRd to mathbbRd to mathbbRd to mathbbRd to mathbbRd to mathbbRd to mathbbRd to math
- Score: 6.164223149261533
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, deep learning-based sequence modelings, such as language models, have received much attention and success, which pushes researchers to explore the possibility of transforming non-sequential problems into a sequential form. Following this thought, deep neural networks can be represented as composite functions of a sequence of mappings, linear or nonlinear, where each composition can be viewed as a \emph{word}. However, the weights of linear mappings are undetermined and hence require an infinite number of words. In this article, we investigate the finite case and constructively prove the existence of a finite \emph{vocabulary} $V=\{\phi_i: \mathbb{R}^d \to \mathbb{R}^d | i=1,...,n\}$ with $n=O(d^2)$ for the universal approximation. That is, for any continuous mapping $f: \mathbb{R}^d \to \mathbb{R}^d$, compact domain $\Omega$ and $\varepsilon>0$, there is a sequence of mappings $\phi_{i_1}, ..., \phi_{i_m} \in V, m \in \mathbb{Z}_+$, such that the composition $\phi_{i_m} \circ ... \circ \phi_{i_1} $ approximates $f$ on $\Omega$ with an error less than $\varepsilon$. Our results demonstrate an unusual approximation power of mapping compositions and motivate a novel compositional model for regular languages.
Related papers
- Efficient Continual Finite-Sum Minimization [52.5238287567572]
We propose a key twist into the finite-sum minimization, dubbed as continual finite-sum minimization.
Our approach significantly improves upon the $mathcalO(n/epsilon)$ FOs that $mathrmStochasticGradientDescent$ requires.
We also prove that there is no natural first-order method with $mathcalOleft(n/epsilonalpharight)$ complexity gradient for $alpha 1/4$, establishing that the first-order complexity of our method is nearly tight.
arXiv Detail & Related papers (2024-06-07T08:26:31Z) - Provably learning a multi-head attention layer [55.2904547651831]
Multi-head attention layer is one of the key components of the transformer architecture that sets it apart from traditional feed-forward models.
In this work, we initiate the study of provably learning a multi-head attention layer from random examples.
We prove computational lower bounds showing that in the worst case, exponential dependence on $m$ is unavoidable.
arXiv Detail & Related papers (2024-02-06T15:39:09Z) - A Unified Framework for Uniform Signal Recovery in Nonlinear Generative
Compressed Sensing [68.80803866919123]
Under nonlinear measurements, most prior results are non-uniform, i.e., they hold with high probability for a fixed $mathbfx*$ rather than for all $mathbfx*$ simultaneously.
Our framework accommodates GCS with 1-bit/uniformly quantized observations and single index models as canonical examples.
We also develop a concentration inequality that produces tighter bounds for product processes whose index sets have low metric entropy.
arXiv Detail & Related papers (2023-09-25T17:54:19Z) - Noncompact uniform universal approximation [0.0]
The universal approximation theorem is generalised to uniform convergence on the (noncompact) input space $mathbbRn$.
All continuous functions that vanish at infinity can be uniformly approximated by neural networks.
arXiv Detail & Related papers (2023-08-07T08:54:21Z) - Learning Elastic Costs to Shape Monge Displacements [39.381326738705255]
Monge problem asks to find the most efficient way to map one distribution to the other.
elastic costs shape the textitdisplacements of Monge maps $T$.
We propose a numerical method to compute Monge maps that are provably optimal.
arXiv Detail & Related papers (2023-06-20T21:17:32Z) - Learning a Single Neuron with Adversarial Label Noise via Gradient
Descent [50.659479930171585]
We study a function of the form $mathbfxmapstosigma(mathbfwcdotmathbfx)$ for monotone activations.
The goal of the learner is to output a hypothesis vector $mathbfw$ that $F(mathbbw)=C, epsilon$ with high probability.
arXiv Detail & Related papers (2022-06-17T17:55:43Z) - On Outer Bi-Lipschitz Extensions of Linear Johnson-Lindenstrauss
Embeddings of Low-Dimensional Submanifolds of $\mathbb{R}^N$ [0.24366811507669117]
Let $mathcalM$ be a compact $d$-dimensional submanifold of $mathbbRN$ with reach $tau$ and volume $V_mathcal M$.
We prove that a nonlinear function $f: mathbbRN rightarrow mathbbRmm exists with $m leq C left(d / epsilon2right) log left(fracsqrt[d]V_math
arXiv Detail & Related papers (2022-06-07T15:10:46Z) - Metric Hypertransformers are Universal Adapted Maps [4.83420384410068]
metric hypertransformers (MHTs) are capable of approxing any adapted map $F:mathscrXmathbbZrightarrow mathscrYmathbbZ$ with approximable complexity.
Our results provide the first (quantimat) universal approximation theorem compatible with any such $mathscrX$ and $mathscrY$.
arXiv Detail & Related papers (2022-01-31T10:03:46Z) - A deep network construction that adapts to intrinsic dimensionality
beyond the domain [79.23797234241471]
We study the approximation of two-layer compositions $f(x) = g(phi(x))$ via deep networks with ReLU activation.
We focus on two intuitive and practically relevant choices for $phi$: the projection onto a low-dimensional embedded submanifold and a distance to a collection of low-dimensional sets.
arXiv Detail & Related papers (2020-08-06T09:50:29Z) - A Canonical Transform for Strengthening the Local $L^p$-Type Universal
Approximation Property [4.18804572788063]
$Lp$-type universal approximation theorems guarantee that a given machine learning model class $mathscrFsubseteq C(mathbbRd,mathbbRD)$ is dense in $Lp_mu(mathbbRd,mathbbRD)$.
This paper proposes a generic solution to this approximation theoretic problem by introducing a canonical transformation which "upgrades $mathscrF$'s approximation property"
arXiv Detail & Related papers (2020-06-24T17:46:35Z) - On the Complexity of Minimizing Convex Finite Sums Without Using the
Indices of the Individual Functions [62.01594253618911]
We exploit the finite noise structure of finite sums to derive a matching $O(n2)$-upper bound under the global oracle model.
Following a similar approach, we propose a novel adaptation of SVRG which is both emphcompatible with oracles, and achieves complexity bounds of $tildeO(n2+nsqrtL/mu)log (1/epsilon)$ and $O(nsqrtL/epsilon)$, for $mu>0$ and $mu=0$
arXiv Detail & Related papers (2020-02-09T03:39:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.