Towards Complex Dynamic Physics System Simulation with Graph Neural ODEs
- URL: http://arxiv.org/abs/2305.12334v4
- Date: Fri, 30 Jun 2023 00:16:29 GMT
- Title: Towards Complex Dynamic Physics System Simulation with Graph Neural ODEs
- Authors: Guangsi Shi, Daokun Zhang, Ming Jin, Shirui Pan and Philip S. Yu
- Abstract summary: This paper proposes a novel learning based simulation model that characterizes the varying spatial and temporal dependencies in particle systems.
We empirically evaluate GNSTODE's simulation performance on two real-world particle systems, Gravity and Coulomb.
- Score: 75.7104463046767
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The great learning ability of deep learning models facilitates us to
comprehend the real physical world, making learning to simulate complicated
particle systems a promising endeavour. However, the complex laws of the
physical world pose significant challenges to the learning based simulations,
such as the varying spatial dependencies between interacting particles and
varying temporal dependencies between particle system states in different time
stamps, which dominate particles' interacting behaviour and the physical
systems' evolution patterns. Existing learning based simulation methods fail to
fully account for the complexities, making them unable to yield satisfactory
simulations. To better comprehend the complex physical laws, this paper
proposes a novel learning based simulation model- Graph Networks with
Spatial-Temporal neural Ordinary Equations (GNSTODE)- that characterizes the
varying spatial and temporal dependencies in particle systems using a united
end-to-end framework. Through training with real-world particle-particle
interaction observations, GNSTODE is able to simulate any possible particle
systems with high precisions. We empirically evaluate GNSTODE's simulation
performance on two real-world particle systems, Gravity and Coulomb, with
varying levels of spatial and temporal dependencies. The results show that the
proposed GNSTODE yields significantly better simulations than state-of-the-art
learning based simulation methods, which proves that GNSTODE can serve as an
effective solution to particle simulations in real-world application.
Related papers
- Spherinator and HiPSter: Representation Learning for Unbiased Knowledge Discovery from Simulations [0.0]
We describe a new, unbiased, and machine learning based approach to obtain useful scientific insights from a broad range of simulations.
Our concept is based on applying nonlinear dimensionality reduction to learn compact representations of the data in a low-dimensional space.
We present a prototype using a rotational invariant hyperspherical variational convolutional autoencoder, utilizing a power distribution in the latent space, and trained on galaxies from IllustrisTNG simulation.
arXiv Detail & Related papers (2024-06-06T07:34:58Z) - Physics-enhanced Neural Operator for Simulating Turbulent Transport [9.923888452768919]
This paper presents a physics-enhanced neural operator (PENO) that incorporates physical knowledge of partial differential equations (PDEs) to accurately model flow dynamics.
The proposed method is evaluated through its performance on two distinct sets of 3D turbulent flow data.
arXiv Detail & Related papers (2024-05-31T20:05:17Z) - Transformer with Implicit Edges for Particle-based Physics Simulation [135.77656965678196]
Transformer with Implicit Edges (TIE) captures the rich semantics of particle interactions in an edge-free manner.
We evaluate our model on diverse domains of varying complexity and materials.
arXiv Detail & Related papers (2022-07-22T03:45:29Z) - Transformer Inertial Poser: Attention-based Real-time Human Motion
Reconstruction from Sparse IMUs [79.72586714047199]
We propose an attention-based deep learning method to reconstruct full-body motion from six IMU sensors in real-time.
Our method achieves new state-of-the-art results both quantitatively and qualitatively, while being simple to implement and smaller in size.
arXiv Detail & Related papers (2022-03-29T16:24:52Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process (INP) is a deep active learning framework for simulations and with active learning approaches.
For active learning, we propose a novel acquisition function, Latent Information Gain (LIG), calculated in the latent space of NP based models.
The results demonstrate STNP outperforms the baselines in the learning setting and LIG achieves the state-of-the-art for active learning.
arXiv Detail & Related papers (2021-06-05T01:31:51Z) - Learning 3D Granular Flow Simulations [6.308272531414633]
We present a Graph Neural Networks approach towards accurate modeling of complex 3D granular flow simulation processes created by the discrete element method LIGGGHTS.
We discuss how to implement Graph Neural Networks that deal with 3D objects, boundary conditions, particle - particle, and particle - boundary interactions.
arXiv Detail & Related papers (2021-05-04T17:27:59Z) - Data-Efficient Learning for Complex and Real-Time Physical Problem
Solving using Augmented Simulation [49.631034790080406]
We present a task for navigating a marble to the center of a circular maze.
We present a model that learns to move a marble in the complex environment within minutes of interacting with the real system.
arXiv Detail & Related papers (2020-11-14T02:03:08Z) - Scalable Graph Networks for Particle Simulations [1.933681537640272]
We introduce an approach that transforms a fully-connected interaction graph into a hierarchical one.
Using our approach, we are able to train models on much larger particle counts, even on a single GPU.
Our approach retains high accuracy and efficiency even on large-scale gravitational N-body simulations.
arXiv Detail & Related papers (2020-10-14T10:54:54Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
We present a machine learning framework and model implementation that can learn to simulate a wide variety of challenging physical domains.
Our framework---which we term "Graph Network-based Simulators" (GNS)--represents the state of a physical system with particles, expressed as nodes in a graph, and computes dynamics via learned message-passing.
Our results show that our model can generalize from single-timestep predictions with thousands of particles during training, to different initial conditions, thousands of timesteps, and at least an order of magnitude more particles at test time.
arXiv Detail & Related papers (2020-02-21T16:44:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.