The CLIP Model is Secretly an Image-to-Prompt Converter
- URL: http://arxiv.org/abs/2305.12716v2
- Date: Thu, 15 Feb 2024 03:31:15 GMT
- Title: The CLIP Model is Secretly an Image-to-Prompt Converter
- Authors: Yuxuan Ding, Chunna Tian, Haoxuan Ding, Lingqiao Liu
- Abstract summary: The paper demonstrates that the CLIP model, as utilized in Stable Diffusion, inherently possesses the ability to instantaneously convert images into text prompts.
Such an image-to-prompt conversion can be achieved by utilizing a linear projection matrix that is calculated in a closed form.
- Score: 26.92989288717742
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Stable Diffusion model is a prominent text-to-image generation model that
relies on a text prompt as its input, which is encoded using the Contrastive
Language-Image Pre-Training (CLIP). However, text prompts have limitations when
it comes to incorporating implicit information from reference images. Existing
methods have attempted to address this limitation by employing expensive
training procedures involving millions of training samples for image-to-image
generation. In contrast, this paper demonstrates that the CLIP model, as
utilized in Stable Diffusion, inherently possesses the ability to
instantaneously convert images into text prompts. Such an image-to-prompt
conversion can be achieved by utilizing a linear projection matrix that is
calculated in a closed form. Moreover, the paper showcases that this capability
can be further enhanced by either utilizing a small amount of similar-domain
training data (approximately 100 images) or incorporating several online
training steps (around 30 iterations) on the reference images. By leveraging
these approaches, the proposed method offers a simple and flexible solution to
bridge the gap between images and text prompts. This methodology can be applied
to various tasks such as image variation and image editing, facilitating more
effective and seamless interaction between images and textual prompts.
Related papers
- Analogist: Out-of-the-box Visual In-Context Learning with Image Diffusion Model [25.47573567479831]
We propose a novel inference-based visual ICL approach that exploits both visual and textual prompting techniques.
Our method is out-of-the-box and does not require fine-tuning or optimization.
arXiv Detail & Related papers (2024-05-16T17:59:21Z) - Dynamic Prompt Optimizing for Text-to-Image Generation [63.775458908172176]
We introduce the textbfPrompt textbfAuto-textbfEditing (PAE) method to improve text-to-image generative models.
We employ an online reinforcement learning strategy to explore the weights and injection time steps of each word, leading to the dynamic fine-control prompts.
arXiv Detail & Related papers (2024-04-05T13:44:39Z) - Seek for Incantations: Towards Accurate Text-to-Image Diffusion
Synthesis through Prompt Engineering [118.53208190209517]
We propose a framework to learn the proper textual descriptions for diffusion models through prompt learning.
Our method can effectively learn the prompts to improve the matches between the input text and the generated images.
arXiv Detail & Related papers (2024-01-12T03:46:29Z) - Text-Driven Image Editing via Learnable Regions [74.45313434129005]
We introduce a method for region-based image editing driven by textual prompts, without the need for user-provided masks or sketches.
We show that this simple approach enables flexible editing that is compatible with current image generation models.
Experiments demonstrate the competitive performance of our method in manipulating images with high fidelity and realism that correspond to the provided language descriptions.
arXiv Detail & Related papers (2023-11-28T02:27:31Z) - De-Diffusion Makes Text a Strong Cross-Modal Interface [33.90004746543745]
We employ an autoencoder that uses a pre-trained text-to-image diffusion model for decoding.
Experiments validate the precision and comprehensiveness of De-Diffusion text representing images.
A single De-Diffusion model can generalize to provide transferable prompts for different text-to-image tools.
arXiv Detail & Related papers (2023-11-01T16:12:40Z) - TextCLIP: Text-Guided Face Image Generation And Manipulation Without
Adversarial Training [5.239585892767183]
We propose TextCLIP, a unified framework for text-guided image generation and manipulation without adversarial training.
Our proposed method outperforms existing state-of-the-art methods, both on text-guided generation tasks and manipulation tasks.
arXiv Detail & Related papers (2023-09-21T09:34:20Z) - StableRep: Synthetic Images from Text-to-Image Models Make Strong Visual
Representation Learners [58.941838860425754]
We show that training self-supervised methods on synthetic images can match or beat the real image counterpart.
We develop a multi-positive contrastive learning method, which we call StableRep.
With solely synthetic images, the representations learned by StableRep surpass the performance of representations learned by SimCLR and CLIP.
arXiv Detail & Related papers (2023-06-01T17:59:51Z) - SUR-adapter: Enhancing Text-to-Image Pre-trained Diffusion Models with
Large Language Models [56.88192537044364]
We propose a simple-yet-effective parameter-efficient fine-tuning approach called the Semantic Understanding and Reasoning adapter (SUR-adapter) for pre-trained diffusion models.
Our approach can make text-to-image diffusion models easier to use with better user experience.
arXiv Detail & Related papers (2023-05-09T05:48:38Z) - clip2latent: Text driven sampling of a pre-trained StyleGAN using
denoising diffusion and CLIP [1.3733526575192976]
We introduce a new method to efficiently create text-to-image models from a pre-trained CLIP and StyleGAN.
It enables text driven sampling with an existing generative model without any external data or fine-tuning.
We leverage the alignment between CLIP's image and text embeddings to avoid the need for any text labelled data for training the conditional diffusion model.
arXiv Detail & Related papers (2022-10-05T15:49:41Z) - LDEdit: Towards Generalized Text Guided Image Manipulation via Latent
Diffusion Models [12.06277444740134]
generic image manipulation using a single model with flexible text inputs is highly desirable.
Recent work addresses this task by guiding generative models trained on the generic image using pretrained vision-language encoders.
We propose an optimization-free method for the task of generic image manipulation from text prompts.
arXiv Detail & Related papers (2022-10-05T13:26:15Z) - StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery [71.1862388442953]
We develop a text-based interface for StyleGAN image manipulation.
We first introduce an optimization scheme that utilizes a CLIP-based loss to modify an input latent vector in response to a user-provided text prompt.
Next, we describe a latent mapper that infers a text-guided latent manipulation step for a given input image, allowing faster and more stable text-based manipulation.
arXiv Detail & Related papers (2021-03-31T17:51:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.