SignSVRG: fixing SignSGD via variance reduction
- URL: http://arxiv.org/abs/2305.13187v1
- Date: Mon, 22 May 2023 16:14:53 GMT
- Title: SignSVRG: fixing SignSGD via variance reduction
- Authors: Evgenii Chzhen and Sholom Schechtman
- Abstract summary: We propose a simple, yet, practical way to incorporate variance reduction techniques into SignSGD.
We show that for smooth functions our method gives $mathcalO (1 / sqrtT)$ rate for expected norm of the gradient and $mathcalO (1/T)$ rate in the case of smooth convex functions.
- Score: 3.3504365823045044
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of unconstrained minimization of finite sums of
functions. We propose a simple, yet, practical way to incorporate variance
reduction techniques into SignSGD, guaranteeing convergence that is similar to
the full sign gradient descent. The core idea is first instantiated on the
problem of minimizing sums of convex and Lipschitz functions and is then
extended to the smooth case via variance reduction. Our analysis is elementary
and much simpler than the typical proof for variance reduction methods. We show
that for smooth functions our method gives $\mathcal{O}(1 / \sqrt{T})$ rate for
expected norm of the gradient and $\mathcal{O}(1/T)$ rate in the case of smooth
convex functions, recovering convergence results of deterministic methods,
while preserving computational advantages of SignSGD.
Related papers
- Double Variance Reduction: A Smoothing Trick for Composite Optimization Problems without First-Order Gradient [40.22217106270146]
Variance reduction techniques are designed to decrease the sampling variance, thereby accelerating convergence rates of first-order (FO) and zeroth-order (ZO) optimization methods.
In composite optimization problems, ZO methods encounter an additional variance called the coordinate-wise variance, which stems from the random estimation.
This paper proposes the Zeroth-order Proximal Double Variance Reduction (ZPDVR) method, which utilizes the averaging trick to reduce both sampling and coordinate-wise variances.
arXiv Detail & Related papers (2024-05-28T02:27:53Z) - Multi-block-Single-probe Variance Reduced Estimator for Coupled
Compositional Optimization [49.58290066287418]
We propose a novel method named Multi-block-probe Variance Reduced (MSVR) to alleviate the complexity of compositional problems.
Our results improve upon prior ones in several aspects, including the order of sample complexities and dependence on strongity.
arXiv Detail & Related papers (2022-07-18T12:03:26Z) - Faster One-Sample Stochastic Conditional Gradient Method for Composite
Convex Minimization [61.26619639722804]
We propose a conditional gradient method (CGM) for minimizing convex finite-sum objectives formed as a sum of smooth and non-smooth terms.
The proposed method, equipped with an average gradient (SAG) estimator, requires only one sample per iteration. Nevertheless, it guarantees fast convergence rates on par with more sophisticated variance reduction techniques.
arXiv Detail & Related papers (2022-02-26T19:10:48Z) - Towards Noise-adaptive, Problem-adaptive Stochastic Gradient Descent [7.176107039687231]
We design step-size schemes that make gradient descent (SGD) adaptive to (i) the noise.
We prove that $T$ iterations of SGD with Nesterov iterations can be near optimal.
Compared to other step-size schemes, we demonstrate the effectiveness of a novel novel exponential step-size scheme.
arXiv Detail & Related papers (2021-10-21T19:22:14Z) - A Variance Controlled Stochastic Method with Biased Estimation for
Faster Non-convex Optimization [0.0]
We propose a new technique, em variance controlled gradient (VCSG), to improve the performance of the reduced gradient (SVRG)
$lambda$ is introduced in VCSG to avoid over-reducing a variance by SVRG.
$mathcalO(min1/epsilon3/2,n1/4/epsilon)$ number of gradient evaluations, which improves the leading gradient complexity.
arXiv Detail & Related papers (2021-02-19T12:22:56Z) - Unified Analysis of Stochastic Gradient Methods for Composite Convex and
Smooth Optimization [15.82816385434718]
We present a unified theorem for the convergence analysis of gradient algorithms for minimizing a smooth and convex loss plus a convex regularizer.
We do this by extending the unified analysis of Gorbunov, Hanzely & Richt'arik ( 2020) and dropping the requirement that the loss function be strongly convex.
Our unified analysis applies to a host of existing algorithms such as proximal SGD, variance reduced methods, quantization and some coordinate descent type methods.
arXiv Detail & Related papers (2020-06-20T13:40:27Z) - On the Almost Sure Convergence of Stochastic Gradient Descent in
Non-Convex Problems [75.58134963501094]
This paper analyzes the trajectories of gradient descent (SGD)
We show that SGD avoids saddle points/manifolds with $1$ for strict step-size policies.
arXiv Detail & Related papers (2020-06-19T14:11:26Z) - Gradient Free Minimax Optimization: Variance Reduction and Faster
Convergence [120.9336529957224]
In this paper, we denote the non-strongly setting on the magnitude of a gradient-free minimax optimization problem.
We show that a novel zeroth-order variance reduced descent algorithm achieves the best known query complexity.
arXiv Detail & Related papers (2020-06-16T17:55:46Z) - A Simple Convergence Proof of Adam and Adagrad [74.24716715922759]
We show a proof of convergence between the Adam Adagrad and $O(d(N)/st)$ algorithms.
Adam converges with the same convergence $O(d(N)/st)$ when used with the default parameters.
arXiv Detail & Related papers (2020-03-05T01:56:17Z) - Complexity of Finding Stationary Points of Nonsmooth Nonconvex Functions [84.49087114959872]
We provide the first non-asymptotic analysis for finding stationary points of nonsmooth, nonsmooth functions.
In particular, we study Hadamard semi-differentiable functions, perhaps the largest class of nonsmooth functions.
arXiv Detail & Related papers (2020-02-10T23:23:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.