Auto-Linear Phenomenon in Subsurface Imaging
- URL: http://arxiv.org/abs/2305.13314v3
- Date: Tue, 21 May 2024 17:59:10 GMT
- Title: Auto-Linear Phenomenon in Subsurface Imaging
- Authors: Yinan Feng, Yinpeng Chen, Peng Jin, Shihang Feng, Zicheng Liu, Youzuo Lin,
- Abstract summary: Subsurface imaging involves solving full waveform inversion (FWI) to predict geophysical properties from measurements.
The usual approach is to train an encoder-decoder network using paired data from two domains: geophysical property and measurement.
This paper extends this direction by demonstrating that only linear mapping necessitates paired data, while both the encoder and decoder can be learned from their respective domains through self-supervised learning.
- Score: 31.36376355719394
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Subsurface imaging involves solving full waveform inversion (FWI) to predict geophysical properties from measurements. This problem can be reframed as an image-to-image translation, with the usual approach being to train an encoder-decoder network using paired data from two domains: geophysical property and measurement. A recent seminal work (InvLINT) demonstrates there is only a linear mapping between the latent spaces of the two domains, and the decoder requires paired data for training. This paper extends this direction by demonstrating that only linear mapping necessitates paired data, while both the encoder and decoder can be learned from their respective domains through self-supervised learning. This unveils an intriguing phenomenon (named Auto-Linear) where the self-learned features of two separate domains are automatically linearly correlated. Compared with existing methods, our Auto-Linear has four advantages: (a) solving both forward and inverse modeling simultaneously, (b) applicable to different subsurface imaging tasks and achieving markedly better results than previous methods, (c)enhanced performance, especially in scenarios with limited paired data and in the presence of noisy data, and (d) strong generalization ability of the trained encoder and decoder.
Related papers
- LiOn-XA: Unsupervised Domain Adaptation via LiDAR-Only Cross-Modal Adversarial Training [61.26381389532653]
LiOn-XA is an unsupervised domain adaptation (UDA) approach that combines LiDAR-Only Cross-Modal (X) learning with Adversarial training for 3D LiDAR point cloud semantic segmentation.
Our experiments on 3 real-to-real adaptation scenarios demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2024-10-21T09:50:17Z) - Cross-domain and Cross-dimension Learning for Image-to-Graph
Transformers [50.576354045312115]
Direct image-to-graph transformation is a challenging task that solves object detection and relationship prediction in a single model.
We introduce a set of methods enabling cross-domain and cross-dimension transfer learning for image-to-graph transformers.
We demonstrate our method's utility in cross-domain and cross-dimension experiments, where we pretrain our models on 2D satellite images before applying them to vastly different target domains in 2D and 3D.
arXiv Detail & Related papers (2024-03-11T10:48:56Z) - Fully Differentiable Correlation-driven 2D/3D Registration for X-ray to CT Image Fusion [3.868072865207522]
Image-based rigid 2D/3D registration is a critical technique for fluoroscopic guided surgical interventions.
We propose a novel fully differentiable correlation-driven network using a dual-branch CNN-transformer encoder.
A correlation-driven loss is proposed for low-frequency feature and high-frequency feature decomposition based on embedded information.
arXiv Detail & Related papers (2024-02-04T14:12:51Z) - Neural Semantic Surface Maps [52.61017226479506]
We present an automated technique for computing a map between two genus-zero shapes, which matches semantically corresponding regions to one another.
Our approach can generate semantic surface-to-surface maps, eliminating manual annotations or any 3D training data requirement.
arXiv Detail & Related papers (2023-09-09T16:21:56Z) - Full High-Dimensional Intelligible Learning In 2-D Lossless
Visualization Space [7.005458308454871]
This study explores a new methodology for machine learning classification tasks in 2-D visualization space (2-D ML)
It is shown that this is a full machine learning approach that does not require processing n-dimensional data in an abstract n-dimensional space.
It enables discovering n-D patterns in 2-D space without loss of n-D information using graph representations of n-D data in 2-D.
arXiv Detail & Related papers (2023-05-29T00:21:56Z) - QuadFormer: Quadruple Transformer for Unsupervised Domain Adaptation in
Power Line Segmentation of Aerial Images [12.840195641761323]
We propose a novel framework designed for domain adaptive semantic segmentation.
The hierarchical quadruple transformer combines cross-attention and self-attention mechanisms to adapt transferable context.
We present two datasets - ARPLSyn and ARPLReal - to further advance research in unsupervised domain adaptive powerline segmentation.
arXiv Detail & Related papers (2022-11-29T03:15:27Z) - Adapting the Mean Teacher for keypoint-based lung registration under
geometric domain shifts [75.51482952586773]
deep neural networks generally require plenty of labeled training data and are vulnerable to domain shifts between training and test data.
We present a novel approach to geometric domain adaptation for image registration, adapting a model from a labeled source to an unlabeled target domain.
Our method consistently improves on the baseline model by 50%/47% while even matching the accuracy of models trained on target data.
arXiv Detail & Related papers (2022-07-01T12:16:42Z) - Towards Scale Consistent Monocular Visual Odometry by Learning from the
Virtual World [83.36195426897768]
We propose VRVO, a novel framework for retrieving the absolute scale from virtual data.
We first train a scale-aware disparity network using both monocular real images and stereo virtual data.
The resulting scale-consistent disparities are then integrated with a direct VO system.
arXiv Detail & Related papers (2022-03-11T01:51:54Z) - Autoencoder Image Interpolation by Shaping the Latent Space [12.482988592988868]
Autoencoders represent an effective approach for computing the underlying factors characterizing datasets of different types.
We propose a regularization technique that shapes the latent representation to follow a manifold consistent with the training images.
arXiv Detail & Related papers (2020-08-04T12:32:54Z) - iFAN: Image-Instance Full Alignment Networks for Adaptive Object
Detection [48.83883375118966]
iFAN aims to precisely align feature distributions on both image and instance levels.
It outperforms state-of-the-art methods with a boost of 10%+ AP over the source-only baseline.
arXiv Detail & Related papers (2020-03-09T13:27:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.