DADA: Dialect Adaptation via Dynamic Aggregation of Linguistic Rules
- URL: http://arxiv.org/abs/2305.13406v3
- Date: Wed, 6 Dec 2023 00:19:24 GMT
- Title: DADA: Dialect Adaptation via Dynamic Aggregation of Linguistic Rules
- Authors: Yanchen Liu, William Held, Diyi Yang
- Abstract summary: DADA is a modular approach to imbue SAE-trained models with multi-dialectal robustness.
We show that DADA is effective for both single task and instruction fine language models.
- Score: 64.93179829965072
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing large language models (LLMs) that mainly focus on Standard American
English (SAE) often lead to significantly worse performance when being applied
to other English dialects. While existing mitigations tackle discrepancies for
individual target dialects, they assume access to high-accuracy dialect
identification systems. The boundaries between dialects are inherently
flexible, making it difficult to categorize language into discrete predefined
categories. In this paper, we propose DADA (Dialect Adaptation via Dynamic
Aggregation), a modular approach to imbue SAE-trained models with
multi-dialectal robustness by composing adapters which handle specific
linguistic features. The compositional architecture of DADA allows for both
targeted adaptation to specific dialect variants and simultaneous adaptation to
various dialects. We show that DADA is effective for both single task and
instruction finetuned language models, offering an extensible and interpretable
framework for adapting existing LLMs to different English dialects.
Related papers
- Literary and Colloquial Dialect Identification for Tamil using Acoustic Features [0.0]
Speech technology plays a role in preserving various dialects of a language from going extinct.
The current work proposes a way to identify two popular and broadly classified Tamil dialects.
arXiv Detail & Related papers (2024-08-27T09:00:27Z) - An Initial Investigation of Language Adaptation for TTS Systems under Low-resource Scenarios [76.11409260727459]
This paper explores the language adaptation capability of ZMM-TTS, a recent SSL-based multilingual TTS system.
We demonstrate that the similarity in phonetics between the pre-training and target languages, as well as the language category, affects the target language's adaptation performance.
arXiv Detail & Related papers (2024-06-13T08:16:52Z) - What Do Dialect Speakers Want? A Survey of Attitudes Towards Language Technology for German Dialects [60.8361859783634]
We survey speakers of dialects and regional languages related to German.
We find that respondents are especially in favour of potential NLP tools that work with dialectal input.
arXiv Detail & Related papers (2024-02-19T09:15:28Z) - Task-Agnostic Low-Rank Adapters for Unseen English Dialects [52.88554155235167]
Large Language Models (LLMs) are trained on corpora disproportionally weighted in favor of Standard American English.
By disentangling dialect-specific and cross-dialectal information, HyperLoRA improves generalization to unseen dialects in a task-agnostic fashion.
arXiv Detail & Related papers (2023-11-02T01:17:29Z) - TADA: Task-Agnostic Dialect Adapters for English [44.39195676661607]
Large Language Models fail at a higher rate for speakers of English dialects other than Standard American English (SAE)
We introduce a simple yet effective method for task-agnostic dialect adaptation by aligning non-SAE dialects using adapters and composing them with task-specific adapters from SAE.
arXiv Detail & Related papers (2023-05-26T05:45:03Z) - Multi-VALUE: A Framework for Cross-Dialectal English NLP [49.55176102659081]
Multi- Dialect is a controllable rule-based translation system spanning 50 English dialects.
Stress tests reveal significant performance disparities for leading models on non-standard dialects.
We partner with native speakers of Chicano and Indian English to release new gold-standard variants of the popular CoQA task.
arXiv Detail & Related papers (2022-12-15T18:17:01Z) - A Highly Adaptive Acoustic Model for Accurate Multi-Dialect Speech
Recognition [80.87085897419982]
We propose a novel acoustic modeling technique for accurate multi-dialect speech recognition with a single AM.
Our proposed AM is dynamically adapted based on both dialect information and its internal representation, which results in a highly adaptive AM for handling multiple dialects simultaneously.
The experimental results on large scale speech datasets show that the proposed AM outperforms all the previous ones, reducing word error rates (WERs) by 8.11% relative compared to a single all-dialects AM and by 7.31% relative compared to dialect-specific AMs.
arXiv Detail & Related papers (2022-05-06T06:07:09Z) - Learning to Recognize Dialect Features [21.277962038423123]
We introduce the task of dialect feature detection, and present two multitask learning approaches.
We train our models on a small number of minimal pairs, building on how linguists typically define dialect features.
arXiv Detail & Related papers (2020-10-23T23:25:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.