Enhancing Accuracy and Robustness through Adversarial Training in Class
Incremental Continual Learning
- URL: http://arxiv.org/abs/2305.13678v1
- Date: Tue, 23 May 2023 04:37:18 GMT
- Title: Enhancing Accuracy and Robustness through Adversarial Training in Class
Incremental Continual Learning
- Authors: Minchan Kwon, Kangil Kim
- Abstract summary: Adversarial attack to deep learning models is a fatal security issue.
CICL is well-known defense method against adversarial attack.
We propose External Adversarial Training (EAT) which can be applied to methods using experience replay.
- Score: 0.34265828682659694
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In real life, adversarial attack to deep learning models is a fatal security
issue. However, the issue has been rarely discussed in a widely used
class-incremental continual learning (CICL). In this paper, we address problems
of applying adversarial training to CICL, which is well-known defense method
against adversarial attack. A well-known problem of CICL is class-imbalance
that biases a model to the current task by a few samples of previous tasks.
Meeting with the adversarial training, the imbalance causes another imbalance
of attack trials over tasks. Lacking clean data of a minority class by the
class-imbalance and increasing of attack trials from a majority class by the
secondary imbalance, adversarial training distorts optimal decision boundaries.
The distortion eventually decreases both accuracy and robustness than
adversarial training. To exclude the effects, we propose a straightforward but
significantly effective method, External Adversarial Training (EAT) which can
be applied to methods using experience replay. This method conduct adversarial
training to an auxiliary external model for the current task data at each time
step, and applies generated adversarial examples to train the target model. We
verify the effects on a toy problem and show significance on CICL benchmarks of
image classification. We expect that the results will be used as the first
baseline for robustness research of CICL.
Related papers
- Efficient Adversarial Training in LLMs with Continuous Attacks [99.5882845458567]
Large language models (LLMs) are vulnerable to adversarial attacks that can bypass their safety guardrails.
We propose a fast adversarial training algorithm (C-AdvUL) composed of two losses.
C-AdvIPO is an adversarial variant of IPO that does not require utility data for adversarially robust alignment.
arXiv Detail & Related papers (2024-05-24T14:20:09Z) - Class Incremental Learning for Adversarial Robustness [17.06592851567578]
Adrial training integrates adversarial examples during model training to enhance robustness.
We observe that combining incremental learning with naive adversarial training easily leads to a loss of robustness.
We propose the Flatness Preserving Distillation (FPD) loss that leverages the output difference between adversarial and clean examples.
arXiv Detail & Related papers (2023-12-06T04:38:02Z) - Outlier Robust Adversarial Training [57.06824365801612]
We introduce Outlier Robust Adversarial Training (ORAT) in this work.
ORAT is based on a bi-level optimization formulation of adversarial training with a robust rank-based loss function.
We show that the learning objective of ORAT satisfies the $mathcalH$-consistency in binary classification, which establishes it as a proper surrogate to adversarial 0/1 loss.
arXiv Detail & Related papers (2023-09-10T21:36:38Z) - Doubly Robust Instance-Reweighted Adversarial Training [107.40683655362285]
We propose a novel doubly-robust instance reweighted adversarial framework.
Our importance weights are obtained by optimizing the KL-divergence regularized loss function.
Our proposed approach outperforms related state-of-the-art baseline methods in terms of average robust performance.
arXiv Detail & Related papers (2023-08-01T06:16:18Z) - Adversarial Fine-tune with Dynamically Regulated Adversary [27.034257769448914]
In many real-world applications such as health diagnosis and autonomous surgical robotics, the standard performance is more valued over model robustness against such extremely malicious attacks.
This work proposes a simple yet effective transfer learning-based adversarial training strategy that disentangles the negative effects of adversarial samples on model's standard performance.
In addition, we introduce a training-friendly adversarial attack algorithm, which facilitates the boost of adversarial robustness without introducing significant training complexity.
arXiv Detail & Related papers (2022-04-28T00:07:15Z) - Imbalanced Adversarial Training with Reweighting [33.51820466479575]
We show that adversarially trained models can suffer much worse performance on under-represented classes, when the training dataset is imbalanced.
Traditional reweighting strategies may lose efficacy to deal with the imbalance issue for adversarial training.
We propose Separable Reweighted Adversarial Training (SRAT) to facilitate adversarial training under imbalanced scenarios.
arXiv Detail & Related papers (2021-07-28T20:51:36Z) - Analysis and Applications of Class-wise Robustness in Adversarial
Training [92.08430396614273]
Adversarial training is one of the most effective approaches to improve model robustness against adversarial examples.
Previous works mainly focus on the overall robustness of the model, and the in-depth analysis on the role of each class involved in adversarial training is still missing.
We provide a detailed diagnosis of adversarial training on six benchmark datasets, i.e., MNIST, CIFAR-10, CIFAR-100, SVHN, STL-10 and ImageNet.
We observe that the stronger attack methods in adversarial learning achieve performance improvement mainly from a more successful attack on the vulnerable classes.
arXiv Detail & Related papers (2021-05-29T07:28:35Z) - Robust Pre-Training by Adversarial Contrastive Learning [120.33706897927391]
Recent work has shown that, when integrated with adversarial training, self-supervised pre-training can lead to state-of-the-art robustness.
We improve robustness-aware self-supervised pre-training by learning representations consistent under both data augmentations and adversarial perturbations.
arXiv Detail & Related papers (2020-10-26T04:44:43Z) - On the Generalization Properties of Adversarial Training [21.79888306754263]
This paper studies the generalization performance of a generic adversarial training algorithm.
A series of numerical studies are conducted to demonstrate how the smoothness and L1 penalization help improve the adversarial robustness of models.
arXiv Detail & Related papers (2020-08-15T02:32:09Z) - Single-step Adversarial training with Dropout Scheduling [59.50324605982158]
We show that models trained using single-step adversarial training method learn to prevent the generation of single-step adversaries.
Models trained using proposed single-step adversarial training method are robust against both single-step and multi-step adversarial attacks.
arXiv Detail & Related papers (2020-04-18T14:14:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.