Pulling Target to Source: A New Perspective on Domain Adaptive Semantic Segmentation
- URL: http://arxiv.org/abs/2305.13752v2
- Date: Wed, 23 Oct 2024 08:53:05 GMT
- Title: Pulling Target to Source: A New Perspective on Domain Adaptive Semantic Segmentation
- Authors: Haochen Wang, Yujun Shen, Jingjing Fei, Wei Li, Liwei Wu, Yuxi Wang, Zhaoxiang Zhang,
- Abstract summary: Domain adaptive semantic segmentation aims to transfer knowledge from a labeled source domain to an unlabeled target domain.
We propose T2S-DA, which we interpret as a form of pulling Target to Source for Domain Adaptation.
- Score: 80.1412989006262
- License:
- Abstract: Domain adaptive semantic segmentation aims to transfer knowledge from a labeled source domain to an unlabeled target domain. However, existing methods primarily focus on directly learning qualified target features, making it challenging to guarantee their discrimination in the absence of target labels. This work provides a new perspective. We observe that the features learned with source data manage to keep categorically discriminative during training, thereby enabling us to implicitly learn adequate target representations by simply \textbf{pulling target features close to source features for each category}. To this end, we propose T2S-DA, which we interpret as a form of pulling Target to Source for Domain Adaptation, encouraging the model in learning similar cross-domain features. Also, considering the pixel categories are heavily imbalanced for segmentation datasets, we come up with a dynamic re-weighting strategy to help the model concentrate on those underperforming classes. Extensive experiments confirm that T2S-DA learns a more discriminative and generalizable representation, significantly surpassing the state-of-the-art. We further show that our method is quite qualified for the domain generalization task, verifying its domain-invariant property.
Related papers
- PiPa++: Towards Unification of Domain Adaptive Semantic Segmentation via Self-supervised Learning [34.786268652516355]
Unsupervised domain adaptive segmentation aims to improve the segmentation accuracy of models on target domains without relying on labeled data from those domains.
It seeks to align the feature representations of the source domain (where labeled data is available) and the target domain (where only unlabeled data is present)
arXiv Detail & Related papers (2024-07-24T08:53:29Z) - Focus on Your Target: A Dual Teacher-Student Framework for
Domain-adaptive Semantic Segmentation [210.46684938698485]
We study unsupervised domain adaptation (UDA) for semantic segmentation.
We find that, by decreasing/increasing the proportion of training samples from the target domain, the 'learning ability' is strengthened/weakened.
We propose a novel dual teacher-student (DTS) framework and equip it with a bidirectional learning strategy.
arXiv Detail & Related papers (2023-03-16T05:04:10Z) - Unsupervised Domain Adaptation for Point Cloud Semantic Segmentation via
Graph Matching [14.876681993079062]
We propose a graph-based framework to explore the local-level feature alignment between the two domains.
We also formulate a category-guided contrastive loss to guide the segmentation model to learn discriminative features on the target domain.
arXiv Detail & Related papers (2022-08-09T02:30:15Z) - DecoupleNet: Decoupled Network for Domain Adaptive Semantic Segmentation [78.30720731968135]
Unsupervised domain adaptation in semantic segmentation has been raised to alleviate the reliance on expensive pixel-wise annotations.
We propose DecoupleNet that alleviates source domain overfitting and enables the final model to focus more on the segmentation task.
We also put forward Self-Discrimination (SD) and introduce an auxiliary classifier to learn more discriminative target domain features with pseudo labels.
arXiv Detail & Related papers (2022-07-20T15:47:34Z) - Domain Adaptive Semantic Segmentation without Source Data [50.18389578589789]
We investigate domain adaptive semantic segmentation without source data, which assumes that the model is pre-trained on the source domain.
We propose an effective framework for this challenging problem with two components: positive learning and negative learning.
Our framework can be easily implemented and incorporated with other methods to further enhance the performance.
arXiv Detail & Related papers (2021-10-13T04:12:27Z) - Prototypical Pseudo Label Denoising and Target Structure Learning for
Domain Adaptive Semantic Segmentation [24.573242887937834]
A competitive approach in domain adaptive segmentation trains the network with the pseudo labels on the target domain.
We take one step further and exploit the feature distances from prototypes that provide richer information than mere prototypes.
We find that distilling the already learned knowledge to a self-supervised pretrained model further boosts the performance.
arXiv Detail & Related papers (2021-01-26T18:12:54Z) - Learning Target Domain Specific Classifier for Partial Domain Adaptation [85.71584004185031]
Unsupervised domain adaptation (UDA) aims at reducing the distribution discrepancy when transferring knowledge from a labeled source domain to an unlabeled target domain.
This paper focuses on a more realistic UDA scenario, where the target label space is subsumed to the source label space.
arXiv Detail & Related papers (2020-08-25T02:28:24Z) - Alleviating Semantic-level Shift: A Semi-supervised Domain Adaptation
Method for Semantic Segmentation [97.8552697905657]
A key challenge of this task is how to alleviate the data distribution discrepancy between the source and target domains.
We propose Alleviating Semantic-level Shift (ASS), which can successfully promote the distribution consistency from both global and local views.
We apply our ASS to two domain adaptation tasks, from GTA5 to Cityscapes and from Synthia to Cityscapes.
arXiv Detail & Related papers (2020-04-02T03:25:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.