Deep Pipeline Embeddings for AutoML
- URL: http://arxiv.org/abs/2305.14009v2
- Date: Wed, 24 May 2023 19:29:19 GMT
- Title: Deep Pipeline Embeddings for AutoML
- Authors: Sebastian Pineda Arango, Josif Grabocka
- Abstract summary: AutoML is a promising direction for democratizing AI by automatically deploying Machine Learning systems with minimal human expertise.
Existing Pipeline Optimization techniques fail to explore deep interactions between pipeline stages/components.
This paper proposes a novel neural architecture that captures the deep interaction between the components of a Machine Learning pipeline.
- Score: 11.168121941015015
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automated Machine Learning (AutoML) is a promising direction for
democratizing AI by automatically deploying Machine Learning systems with
minimal human expertise. The core technical challenge behind AutoML is
optimizing the pipelines of Machine Learning systems (e.g. the choice of
preprocessing, augmentations, models, optimizers, etc.). Existing Pipeline
Optimization techniques fail to explore deep interactions between pipeline
stages/components. As a remedy, this paper proposes a novel neural architecture
that captures the deep interaction between the components of a Machine Learning
pipeline. We propose embedding pipelines into a latent representation through a
novel per-component encoder mechanism. To search for optimal pipelines, such
pipeline embeddings are used within deep-kernel Gaussian Process surrogates
inside a Bayesian Optimization setup. Furthermore, we meta-learn the parameters
of the pipeline embedding network using existing evaluations of pipelines on
diverse collections of related datasets (a.k.a. meta-datasets). Through
extensive experiments on three large-scale meta-datasets, we demonstrate that
pipeline embeddings yield state-of-the-art results in Pipeline Optimization.
Related papers
- Instrumentation and Analysis of Native ML Pipelines via Logical Query Plans [3.2362171533623054]
We envision highly-automated software platforms to assist data scientists with developing, validating, monitoring, and analysing their Machine Learning pipelines.
We extract "logical query plans" from ML pipeline code relying on popular libraries.
Based on these plans, we automatically infer pipeline semantics and instrument and rewrite the ML pipelines to enable diverse use cases without requiring data scientists to manually annotate or rewrite their code.
arXiv Detail & Related papers (2024-07-10T11:35:02Z) - Towards Personalized Preprocessing Pipeline Search [52.59156206880384]
ClusterP3S is a novel framework for Personalized Preprocessing Pipeline Search via Clustering.
We propose a hierarchical search strategy to jointly learn the clusters and search for the optimal pipelines.
Experiments on benchmark classification datasets demonstrate the effectiveness of enabling feature-wise preprocessing pipeline search.
arXiv Detail & Related papers (2023-02-28T05:45:05Z) - SapientML: Synthesizing Machine Learning Pipelines by Learning from
Human-Written Solutions [28.718446733713183]
We propose an AutoML SapientML that can learn from a corpus of existing datasets and their human-written pipelines.
We have created a training corpus of 1094 pipelines spanning 170 datasets, and evaluated SapientML on a set of 41 benchmark datasets.
Our evaluation shows that SapientML produces the best or comparable accuracy on 27 of the benchmarks while the second best tool fails to even produce a pipeline on 9 of the instances.
arXiv Detail & Related papers (2022-02-18T20:45:47Z) - Where Is My Training Bottleneck? Hidden Trade-Offs in Deep Learning
Preprocessing Pipelines [77.45213180689952]
Preprocessing pipelines in deep learning aim to provide sufficient data throughput to keep the training processes busy.
We introduce a new perspective on efficiently preparing datasets for end-to-end deep learning pipelines.
We obtain an increased throughput of 3x to 13x compared to an untuned system.
arXiv Detail & Related papers (2022-02-17T14:31:58Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all requirements while using basic cross-platform tensor framework and script language engines.
This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems.
arXiv Detail & Related papers (2021-12-22T14:45:37Z) - Automated Evolutionary Approach for the Design of Composite Machine
Learning Pipelines [48.7576911714538]
The proposed approach is aimed to automate the design of composite machine learning pipelines.
It designs the pipelines with a customizable graph-based structure, analyzes the obtained results, and reproduces them.
The software implementation on this approach is presented as an open-source framework.
arXiv Detail & Related papers (2021-06-26T23:19:06Z) - PipeTransformer: Automated Elastic Pipelining for Distributed Training
of Transformers [47.194426122333205]
PipeTransformer is a distributed training algorithm for Transformer models.
It automatically adjusts the pipelining and data parallelism by identifying and freezing some layers during the training.
We evaluate PipeTransformer using Vision Transformer (ViT) on ImageNet and BERT on GLUE and SQuAD datasets.
arXiv Detail & Related papers (2021-02-05T13:39:31Z) - Incremental Search Space Construction for Machine Learning Pipeline
Synthesis [4.060731229044571]
Automated machine learning (AutoML) aims for constructing machine learning (ML) pipelines automatically.
We propose a data-centric approach based on meta-features for pipeline construction.
We prove the effectiveness and competitiveness of our approach on 28 data sets used in well-established AutoML benchmarks.
arXiv Detail & Related papers (2021-01-26T17:17:49Z) - AutoWeka4MCPS-AVATAR: Accelerating Automated Machine Learning Pipeline
Composition and Optimisation [13.116806430326513]
We propose a novel method to evaluate the validity of ML pipelines, without their execution, using a surrogate model (AVATAR)
The AVATAR generates a knowledge base by automatically learning the capabilities and effects of ML algorithms on datasets' characteristics.
Instead of executing the original ML pipeline to evaluate its validity, the AVATAR evaluates its surrogate model constructed by capabilities and effects of the ML pipeline components.
arXiv Detail & Related papers (2020-11-21T14:05:49Z) - Deep Shells: Unsupervised Shape Correspondence with Optimal Transport [52.646396621449]
We propose a novel unsupervised learning approach to 3D shape correspondence.
We show that the proposed method significantly improves over the state-of-the-art on multiple datasets.
arXiv Detail & Related papers (2020-10-28T22:24:07Z) - AVATAR -- Machine Learning Pipeline Evaluation Using Surrogate Model [10.83607599315401]
We propose a novel method to evaluate the validity of ML pipelines using a surrogate model (AVATAR)
Our experiments show that the AVATAR is more efficient in evaluating complex pipelines in comparison with the traditional evaluation approaches requiring their execution.
arXiv Detail & Related papers (2020-01-30T02:53:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.