CLIP4STR: A Simple Baseline for Scene Text Recognition with Pre-trained Vision-Language Model
- URL: http://arxiv.org/abs/2305.14014v3
- Date: Thu, 2 May 2024 12:10:16 GMT
- Title: CLIP4STR: A Simple Baseline for Scene Text Recognition with Pre-trained Vision-Language Model
- Authors: Shuai Zhao, Ruijie Quan, Linchao Zhu, Yi Yang,
- Abstract summary: We introduce CLIP4STR, a simple yet effective STR method built upon image and text encoders of CLIP.
We scale CLIP4STR in terms of the model size, pre-training data, and training data, achieving state-of-the-art performance on 11 STR benchmarks.
- Score: 55.321010757641524
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Pre-trained vision-language models~(VLMs) are the de-facto foundation models for various downstream tasks. However, scene text recognition methods still prefer backbones pre-trained on a single modality, namely, the visual modality, despite the potential of VLMs to serve as powerful scene text readers. For example, CLIP can robustly identify regular (horizontal) and irregular (rotated, curved, blurred, or occluded) text in images. With such merits, we transform CLIP into a scene text reader and introduce CLIP4STR, a simple yet effective STR method built upon image and text encoders of CLIP. It has two encoder-decoder branches: a visual branch and a cross-modal branch. The visual branch provides an initial prediction based on the visual feature, and the cross-modal branch refines this prediction by addressing the discrepancy between the visual feature and text semantics. To fully leverage the capabilities of both branches, we design a dual predict-and-refine decoding scheme for inference. We scale CLIP4STR in terms of the model size, pre-training data, and training data, achieving state-of-the-art performance on 11 STR benchmarks. Additionally, a comprehensive empirical study is provided to enhance the understanding of the adaptation of CLIP to STR. We believe our method establishes a simple yet strong baseline for future STR research with VLMs.
Related papers
- Decoder Pre-Training with only Text for Scene Text Recognition [54.93037783663204]
Scene text recognition (STR) pre-training methods have achieved remarkable progress, primarily relying on synthetic datasets.
We introduce a novel method named Decoder Pre-training with only text for STR (DPTR)
DPTR treats text embeddings produced by the CLIP text encoder as pseudo visual embeddings and uses them to pre-train the decoder.
arXiv Detail & Related papers (2024-08-11T06:36:42Z) - SILC: Improving Vision Language Pretraining with Self-Distillation [113.50400246862056]
We introduce SILC, a novel framework for vision language pretraining.
SILC improves image-text contrastive learning with the simple addition of local-to-global correspondence learning by self-distillation.
We show that distilling local image features from an exponential moving average (EMA) teacher model significantly improves model performance on dense predictions tasks like detection and segmentation.
arXiv Detail & Related papers (2023-10-20T08:44:47Z) - Symmetrical Linguistic Feature Distillation with CLIP for Scene Text
Recognition [77.93678598476149]
We establish a novel Symmetrical Linguistic Feature Distillation framework (named CLIP-OCR)
By cascading the CLIP image encoder with the reversed CLIP text encoder, a symmetrical structure is built with an image-to-text feature flow.
Extensive experiments demonstrate the effectiveness of CLIP-OCR with 93.8% average accuracy on six popular STR benchmarks.
arXiv Detail & Related papers (2023-10-08T04:00:20Z) - Turning a CLIP Model into a Scene Text Detector [56.86413150091367]
Recently, pretraining approaches based on vision language models have made effective progresses in the field of text detection.
This paper proposes a new method, termed TCM, focusing on Turning the CLIP Model directly for text detection without pretraining process.
arXiv Detail & Related papers (2023-02-28T06:06:12Z) - Vision-Language Pre-Training for Boosting Scene Text Detectors [57.08046351495244]
We specifically adapt vision-language joint learning for scene text detection.
We propose to learn contextualized, joint representations through vision-language pre-training.
The pre-trained model is able to produce more informative representations with richer semantics.
arXiv Detail & Related papers (2022-04-29T03:53:54Z) - CSTR: A Classification Perspective on Scene Text Recognition [3.286661798699067]
We propose a new perspective on scene text recognition, in which we model the scene text recognition as an image classification problem.
Based on the image classification perspective, a scene text recognition model is proposed, which is named as CSTR.
CSTR achieves nearly state-of-the-art performance on six public benchmarks including regular text, irregular text.
arXiv Detail & Related papers (2021-02-22T10:32:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.