Amplitude-Independent Machine Learning for PPG through Visibility Graphs
and Transfer Learning
- URL: http://arxiv.org/abs/2305.14062v4
- Date: Tue, 16 Jan 2024 13:54:19 GMT
- Title: Amplitude-Independent Machine Learning for PPG through Visibility Graphs
and Transfer Learning
- Authors: Yuyang Miao, Harry J. Davies, Danilo P. Mandic
- Abstract summary: Photoplethysmography (Photoplethysmography) refers to the measurement of variations in blood volume using light.
Photoplethysmography signals provide insight into the body's circulatory system.
Photoplethysmography signals can be employed to extract various bio-features, such as heart rate and vascular ageing.
- Score: 16.79885220470521
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Photoplethysmography (PPG) refers to the measurement of variations in blood
volume using light and is a feature of most wearable devices. The PPG signals
provide insight into the body's circulatory system and can be employed to
extract various bio-features, such as heart rate and vascular ageing. Although
several algorithms have been proposed for this purpose, many exhibit
limitations, including heavy reliance on human calibration, high signal quality
requirements, and a lack of generalisation. In this paper, we introduce a PPG
signal processing framework that integrates graph theory and computer vision
algorithms, to provide an analysis framework which is amplitude-independent and
invariant to affine transformations. It also requires minimal preprocessing,
fuses information through RGB channels and exhibits robust generalisation
across tasks and datasets. The proposed VGTL-net achieves state-of-the-art
performance in the prediction of vascular ageing and demonstrates robust
estimation of continuous blood pressure waveforms.
Related papers
- Personalised and Adjustable Interval Type-2 Fuzzy-Based PPG Quality
Assessment for the Edge [0.1433758865948252]
The presented system has the potential to enable ultra-low complexity and real-time PPG quality assessment.
The proposed system obtained up to 93.72% for average accuracy during validation.
arXiv Detail & Related papers (2023-09-23T19:35:00Z) - Remote Bio-Sensing: Open Source Benchmark Framework for Fair Evaluation
of rPPG [2.82697733014759]
r (pg photoplethysmography) is a technology that measures and analyzes BVP (Blood Volume Pulse) by using the light absorption characteristics of hemoglobin captured through a camera.
This study is to provide a framework to evaluate various r benchmarking techniques across a wide range of datasets for fair evaluation and comparison.
arXiv Detail & Related papers (2023-07-24T09:35:47Z) - Quality Assessment of Photoplethysmography Signals For Cardiovascular
Biomarkers Monitoring Using Wearable Devices [0.0]
Photoplethysmography is a non-invasive technology that measures changes in blood volume in the microvascular bed of tissue.
Photoplethysmography allows for the assessment of parameters that can indicate conditions such as vasoconstriction or vasodilation.
arXiv Detail & Related papers (2023-07-17T18:26:57Z) - Affinity Feature Strengthening for Accurate, Complete and Robust Vessel
Segmentation [48.638327652506284]
Vessel segmentation is crucial in many medical image applications, such as detecting coronary stenoses, retinal vessel diseases and brain aneurysms.
We present a novel approach, the affinity feature strengthening network (AFN), which jointly models geometry and refines pixel-wise segmentation features using a contrast-insensitive, multiscale affinity approach.
arXiv Detail & Related papers (2022-11-12T05:39:17Z) - Factored Attention and Embedding for Unstructured-view Topic-related
Ultrasound Report Generation [70.7778938191405]
We propose a novel factored attention and embedding model (termed FAE-Gen) for the unstructured-view topic-related ultrasound report generation.
The proposed FAE-Gen mainly consists of two modules, i.e., view-guided factored attention and topic-oriented factored embedding, which capture the homogeneous and heterogeneous morphological characteristic across different views.
arXiv Detail & Related papers (2022-03-12T15:24:03Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
Existing databases for ECG delineation are small, being insufficient in size and in the array of pathological conditions they represent.
This article delves has two main contributions. First, a pseudo-synthetic data generation algorithm was developed, based in probabilistically composing ECG traces given "pools" of fundamental segments, as cropped from the original databases, and a set of rules for their arrangement into coherent synthetic traces.
Second, two novel segmentation-based loss functions have been developed, which attempt at enforcing the prediction of an exact number of independent structures and at producing closer segmentation boundaries by focusing on a reduced number of samples.
arXiv Detail & Related papers (2021-11-25T10:11:41Z) - PhysFormer: Facial Video-based Physiological Measurement with Temporal
Difference Transformer [55.936527926778695]
Recent deep learning approaches focus on mining subtle r clues using convolutional neural networks with limited-temporal receptive fields.
In this paper, we propose the PhysFormer, an end-to-end video transformer based architecture.
arXiv Detail & Related papers (2021-11-23T18:57:11Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Video-based Remote Physiological Measurement via Cross-verified Feature
Disentangling [121.50704279659253]
We propose a cross-verified feature disentangling strategy to disentangle the physiological features with non-physiological representations.
We then use the distilled physiological features for robust multi-task physiological measurements.
The disentangled features are finally used for the joint prediction of multiple physiological signals like average HR values and r signals.
arXiv Detail & Related papers (2020-07-16T09:39:17Z) - Estimating Blood Pressure from Photoplethysmogram Signal and Demographic
Features using Machine Learning Techniques [0.0]
Hypertension is a potentially unsafe health ailment, which can be indicated directly from the Blood pressure (BP)
Continuous monitoring of BP is very important; however, BP measurements are discrete and uncomfortable to the user.
To address this need, a cuffless, continuous and a non-invasive BP measurement system is proposed.
arXiv Detail & Related papers (2020-05-07T09:45:02Z) - A Graph-constrained Changepoint Detection Approach for ECG Segmentation [5.209323879611983]
We introduce a novel graph-based optimal changepoint detection (GCCD) method for reliable detection of R-peak positions without employing any preprocessing step.
Based on the MIT-BIH arrhythmia (MIT-BIH-AR) database, the proposed method achieves overall sensitivity Sen = 99.76, positive predictivity PPR = 99.68, and detection error rate DER = 0.55.
arXiv Detail & Related papers (2020-04-24T23:41:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.