APPLS: Evaluating Evaluation Metrics for Plain Language Summarization
- URL: http://arxiv.org/abs/2305.14341v3
- Date: Tue, 23 Jul 2024 18:28:43 GMT
- Title: APPLS: Evaluating Evaluation Metrics for Plain Language Summarization
- Authors: Yue Guo, Tal August, Gondy Leroy, Trevor Cohen, Lucy Lu Wang,
- Abstract summary: This study introduces a granular meta-evaluation testbed, APPLS, designed to evaluate metrics for Plain Language Summarization (PLS)
We identify four PLS criteria from previous work and define a set of perturbations corresponding to these criteria that sensitive metrics should be able to detect.
Using APPLS, we assess performance of 14 metrics, including automated scores, lexical features, and LLM prompt-based evaluations.
- Score: 18.379461020500525
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: While there has been significant development of models for Plain Language Summarization (PLS), evaluation remains a challenge. PLS lacks a dedicated assessment metric, and the suitability of text generation evaluation metrics is unclear due to the unique transformations involved (e.g., adding background explanations, removing jargon). To address these questions, our study introduces a granular meta-evaluation testbed, APPLS, designed to evaluate metrics for PLS. We identify four PLS criteria from previous work -- informativeness, simplification, coherence, and faithfulness -- and define a set of perturbations corresponding to these criteria that sensitive metrics should be able to detect. We apply these perturbations to extractive hypotheses for two PLS datasets to form our testbed. Using APPLS, we assess performance of 14 metrics, including automated scores, lexical features, and LLM prompt-based evaluations. Our analysis reveals that while some current metrics show sensitivity to specific criteria, no single method captures all four criteria simultaneously. We therefore recommend a suite of automated metrics be used to capture PLS quality along all relevant criteria. This work contributes the first meta-evaluation testbed for PLS and a comprehensive evaluation of existing metrics. APPLS and our evaluation code is available at https://github.com/LinguisticAnomalies/APPLS.
Related papers
- FineSurE: Fine-grained Summarization Evaluation using LLMs [22.62504593575933]
FineSurE is a fine-grained evaluator specifically tailored for the summarization task using large language models (LLMs)
It also employs completeness and conciseness criteria, in addition to faithfulness, enabling multi-dimensional assessment.
arXiv Detail & Related papers (2024-07-01T02:20:28Z) - RepEval: Effective Text Evaluation with LLM Representation [55.26340302485898]
RepEval is a metric that leverages the projection of Large Language Models (LLMs) representations for evaluation.
Our work underscores the richness of information regarding text quality embedded within LLM representations, offering insights for the development of new metrics.
arXiv Detail & Related papers (2024-04-30T13:50:55Z) - Who Validates the Validators? Aligning LLM-Assisted Evaluation of LLM Outputs with Human Preferences [11.23629471911503]
EvalGen provides automated assistance to users in generating evaluation criteria and implementing assertions.
A qualitative study finds overall support for EvalGen but underscores the subjectivity and iterative process of alignment.
We identify a phenomenon we dub emphcriteria drift: users need criteria to grade outputs, but grading outputs helps users define criteria.
arXiv Detail & Related papers (2024-04-18T15:45:27Z) - Evaluating Generative Language Models in Information Extraction as Subjective Question Correction [49.729908337372436]
We propose a new evaluation method, SQC-Score.
Inspired by the principles in subjective question correction, we propose a new evaluation method, SQC-Score.
Results on three information extraction tasks show that SQC-Score is more preferred by human annotators than the baseline metrics.
arXiv Detail & Related papers (2024-04-04T15:36:53Z) - Is Reference Necessary in the Evaluation of NLG Systems? When and Where? [58.52957222172377]
We show that reference-free metrics exhibit a higher correlation with human judgment and greater sensitivity to deficiencies in language quality.
Our study can provide insight into the appropriate application of automatic metrics and the impact of metric choice on evaluation performance.
arXiv Detail & Related papers (2024-03-21T10:31:11Z) - SemScore: Automated Evaluation of Instruction-Tuned LLMs based on
Semantic Textual Similarity [3.3162484539136416]
We propose a simple but remarkably effective evaluation metric called SemScore.
We compare model outputs to gold target responses using semantic textual similarity (STS)
We find that our proposed SemScore metric outperforms all other, in many cases more complex, evaluation metrics in terms of correlation to human evaluation.
arXiv Detail & Related papers (2024-01-30T14:52:50Z) - DecompEval: Evaluating Generated Texts as Unsupervised Decomposed
Question Answering [95.89707479748161]
Existing evaluation metrics for natural language generation (NLG) tasks face the challenges on generalization ability and interpretability.
We propose a metric called DecompEval that formulates NLG evaluation as an instruction-style question answering task.
We decompose our devised instruction-style question about the quality of generated texts into the subquestions that measure the quality of each sentence.
The subquestions with their answers generated by PLMs are then recomposed as evidence to obtain the evaluation result.
arXiv Detail & Related papers (2023-07-13T16:16:51Z) - TRUE: Re-evaluating Factual Consistency Evaluation [29.888885917330327]
We introduce TRUE: a comprehensive study of factual consistency metrics on a standardized collection of existing texts from diverse tasks.
Our standardization enables an example-level meta-evaluation protocol that is more actionable and interpretable than previously reported correlations.
Across diverse state-of-the-art metrics and 11 datasets we find that large-scale NLI and question generation-and-answering-based approaches achieve strong and complementary results.
arXiv Detail & Related papers (2022-04-11T10:14:35Z) - GO FIGURE: A Meta Evaluation of Factuality in Summarization [131.1087461486504]
We introduce GO FIGURE, a meta-evaluation framework for evaluating factuality evaluation metrics.
Our benchmark analysis on ten factuality metrics reveals that our framework provides a robust and efficient evaluation.
It also reveals that while QA metrics generally improve over standard metrics that measure factuality across domains, performance is highly dependent on the way in which questions are generated.
arXiv Detail & Related papers (2020-10-24T08:30:20Z) - Towards Question-Answering as an Automatic Metric for Evaluating the
Content Quality of a Summary [65.37544133256499]
We propose a metric to evaluate the content quality of a summary using question-answering (QA)
We demonstrate the experimental benefits of QA-based metrics through an analysis of our proposed metric, QAEval.
arXiv Detail & Related papers (2020-10-01T15:33:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.