Optimization-Based Improvement of Face Image Quality Assessment
Techniques
- URL: http://arxiv.org/abs/2305.14856v1
- Date: Wed, 24 May 2023 08:06:12 GMT
- Title: Optimization-Based Improvement of Face Image Quality Assessment
Techniques
- Authors: \v{Z}iga Babnik, Naser Damer, Vitomir \v{S}truc
- Abstract summary: Face image quality assessment (FIQA) techniques try to infer sample-quality information from the input face images that can aid with the recognition process.
We present in this paper a supervised quality-label optimization approach, aimed at improving the performance of existing FIQA techniques.
We evaluate the proposed approach in comprehensive experiments with six state-of-the-art FIQA approaches.
- Score: 5.831942593046074
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Contemporary face recognition (FR) models achieve near-ideal recognition
performance in constrained settings, yet do not fully translate the performance
to unconstrained (realworld) scenarios. To help improve the performance and
stability of FR systems in such unconstrained settings, face image quality
assessment (FIQA) techniques try to infer sample-quality information from the
input face images that can aid with the recognition process. While existing
FIQA techniques are able to efficiently capture the differences between high
and low quality images, they typically cannot fully distinguish between images
of similar quality, leading to lower performance in many scenarios. To address
this issue, we present in this paper a supervised quality-label optimization
approach, aimed at improving the performance of existing FIQA techniques. The
developed optimization procedure infuses additional information (computed with
a selected FR model) into the initial quality scores generated with a given
FIQA technique to produce better estimates of the "actual" image quality. We
evaluate the proposed approach in comprehensive experiments with six
state-of-the-art FIQA approaches (CR-FIQA, FaceQAN, SER-FIQ, PCNet, MagFace,
SDD-FIQA) on five commonly used benchmarks (LFW, CFPFP, CPLFW, CALFW, XQLFW)
using three targeted FR models (ArcFace, ElasticFace, CurricularFace) with
highly encouraging results.
Related papers
- Rank-based No-reference Quality Assessment for Face Swapping [88.53827937914038]
The metric of measuring the quality in most face swapping methods relies on several distances between the manipulated images and the source image.
We present a novel no-reference image quality assessment (NR-IQA) method specifically designed for face swapping.
arXiv Detail & Related papers (2024-06-04T01:36:29Z) - Descriptive Image Quality Assessment in the Wild [25.503311093471076]
VLM-based Image Quality Assessment (IQA) seeks to describe image quality linguistically to align with human expression.
We introduce Depicted image Quality Assessment in the Wild (DepictQA-Wild)
Our method includes a multi-functional IQA task paradigm that encompasses both assessment and comparison tasks, brief and detailed responses, full-reference and non-reference scenarios.
arXiv Detail & Related papers (2024-05-29T07:49:15Z) - Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
Image Quality Assessment (IQA) models benefit significantly from semantic information, which allows them to treat different types of objects distinctly.
Traditional methods, hindered by a lack of sufficiently annotated data, have employed the CLIP image-text pretraining model as their backbone to gain semantic awareness.
Recent approaches have attempted to address this mismatch using prompt technology, but these solutions have shortcomings.
This paper introduces an innovative multi-modal prompt-based methodology for IQA.
arXiv Detail & Related papers (2024-04-23T11:45:32Z) - FaceQAN: Face Image Quality Assessment Through Adversarial Noise
Exploration [1.217503190366097]
We propose a novel approach to face image quality assessment, called FaceQAN, that is based on adversarial examples.
As such, the proposed approach is the first to link image quality to adversarial attacks.
Experimental results show that FaceQAN achieves competitive results, while exhibiting several desirable characteristics.
arXiv Detail & Related papers (2022-12-05T09:37:32Z) - Iterative Optimization of Pseudo Ground-Truth Face Image Quality Labels [0.0]
Face image quality assessment (FIQA) techniques provide sample quality information that can be used to reject poor quality data.
We propose a quality label optimization approach, which incorporates sample-quality information from mated-pair similarities into quality predictions.
We evaluate the proposed approach using three state-of-the-art FIQA methods over three diverse datasets.
arXiv Detail & Related papers (2022-08-31T08:24:09Z) - Learning Transformer Features for Image Quality Assessment [53.51379676690971]
We propose a unified IQA framework that utilizes CNN backbone and transformer encoder to extract features.
The proposed framework is compatible with both FR and NR modes and allows for a joint training scheme.
arXiv Detail & Related papers (2021-12-01T13:23:00Z) - Cross-Quality LFW: A Database for Analyzing Cross-Resolution Image Face
Recognition in Unconstrained Environments [8.368543987898732]
Real-world face recognition applications often deal with suboptimal image quality or resolution due to different capturing conditions.
Recent cross-resolution face recognition approaches used simple, arbitrary, and unrealistic down- and up-scaling techniques to measure distances against real-world edge-cases in image quality.
We propose a new standardized benchmark dataset and evaluation protocol derived from the famous Labeled Faces in the Wild.
arXiv Detail & Related papers (2021-08-23T17:04:32Z) - Task-Specific Normalization for Continual Learning of Blind Image
Quality Models [105.03239956378465]
We present a simple yet effective continual learning method for blind image quality assessment (BIQA)
The key step in our approach is to freeze all convolution filters of a pre-trained deep neural network (DNN) for an explicit promise of stability.
We assign each new IQA dataset (i.e., task) a prediction head, and load the corresponding normalization parameters to produce a quality score.
The final quality estimate is computed by black a weighted summation of predictions from all heads with a lightweight $K$-means gating mechanism.
arXiv Detail & Related papers (2021-07-28T15:21:01Z) - Deep Tiny Network for Recognition-Oriented Face Image Quality Assessment [26.792481400792376]
In many face recognition (FR) scenarios, face images are acquired from a sequence with huge intra-variations.
We present an efficient non-reference image quality assessment for FR that directly links image quality assessment (IQA) and FR.
Based on the proposed quality measurement, we propose a deep Tiny Face Quality network (tinyFQnet) to learn a quality prediction function from data.
arXiv Detail & Related papers (2021-06-09T07:20:54Z) - Inducing Predictive Uncertainty Estimation for Face Recognition [102.58180557181643]
We propose a method for generating image quality training data automatically from'mated-pairs' of face images.
We use the generated data to train a lightweight Predictive Confidence Network, termed as PCNet, for estimating the confidence score of a face image.
arXiv Detail & Related papers (2020-09-01T17:52:00Z) - Uncertainty-Aware Blind Image Quality Assessment in the Laboratory and
Wild [98.48284827503409]
We develop a textitunified BIQA model and an approach of training it for both synthetic and realistic distortions.
We employ the fidelity loss to optimize a deep neural network for BIQA over a large number of such image pairs.
Experiments on six IQA databases show the promise of the learned method in blindly assessing image quality in the laboratory and wild.
arXiv Detail & Related papers (2020-05-28T13:35:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.