BUFFET: Benchmarking Large Language Models for Few-shot Cross-lingual
Transfer
- URL: http://arxiv.org/abs/2305.14857v1
- Date: Wed, 24 May 2023 08:06:33 GMT
- Title: BUFFET: Benchmarking Large Language Models for Few-shot Cross-lingual
Transfer
- Authors: Akari Asai, Sneha Kudugunta, Xinyan Velocity Yu, Terra Blevins, Hila
Gonen, Machel Reid, Yulia Tsvetkov, Sebastian Ruder, Hannaneh Hajishirzi
- Abstract summary: We introduce BUFFET, which unifies 15 diverse tasks across 54 languages in a sequence-to-sequence format.
BUFFET is designed to establish a rigorous and equitable evaluation framework for few-shot cross-lingual transfer.
Our findings reveal significant room for improvement in few-shot in-context cross-lingual transfer.
- Score: 81.5984433881309
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite remarkable advancements in few-shot generalization in natural
language processing, most models are developed and evaluated primarily in
English. To facilitate research on few-shot cross-lingual transfer, we
introduce a new benchmark, called BUFFET, which unifies 15 diverse tasks across
54 languages in a sequence-to-sequence format and provides a fixed set of
few-shot examples and instructions. BUFFET is designed to establish a rigorous
and equitable evaluation framework for few-shot cross-lingual transfer across a
broad range of tasks and languages. Using BUFFET, we perform thorough
evaluations of state-of-the-art multilingual large language models with
different transfer methods, namely in-context learning and fine-tuning. Our
findings reveal significant room for improvement in few-shot in-context
cross-lingual transfer. In particular, ChatGPT with in-context learning often
performs worse than much smaller mT5-base models fine-tuned on English task
data and few-shot in-language examples. Our analysis suggests various avenues
for future research in few-shot cross-lingual transfer, such as improved
pretraining, understanding, and future evaluations.
Related papers
- Is Prompt-Based Finetuning Always Better than Vanilla Finetuning?
Insights from Cross-Lingual Language Understanding [0.30586855806896046]
We propose the ProFiT pipeline to investigate the cross-lingual capabilities of Prompt-based Finetuning.
Our results reveal the effectiveness and versatility of prompt-based finetuning in cross-lingual language understanding.
arXiv Detail & Related papers (2023-07-15T20:33:33Z) - Efficiently Aligned Cross-Lingual Transfer Learning for Conversational
Tasks using Prompt-Tuning [98.60739735409243]
Cross-lingual transfer of language models trained on high-resource languages like English has been widely studied for many NLP tasks.
We introduce XSGD for cross-lingual alignment pretraining, a parallel and large-scale multilingual conversation dataset.
To facilitate aligned cross-lingual representations, we develop an efficient prompt-tuning-based method for learning alignment prompts.
arXiv Detail & Related papers (2023-04-03T18:46:01Z) - IGLUE: A Benchmark for Transfer Learning across Modalities, Tasks, and
Languages [87.5457337866383]
We introduce the Image-Grounded Language Understanding Evaluation benchmark.
IGLUE brings together visual question answering, cross-modal retrieval, grounded reasoning, and grounded entailment tasks across 20 diverse languages.
We find that translate-test transfer is superior to zero-shot transfer and that few-shot learning is hard to harness for many tasks.
arXiv Detail & Related papers (2022-01-27T18:53:22Z) - Language Models are Few-shot Multilingual Learners [66.11011385895195]
We evaluate the multilingual skills of the GPT and T5 models in conducting multi-class classification on non-English languages.
We show that, given a few English examples as context, pre-trained language models can predict not only English test samples but also non-English ones.
arXiv Detail & Related papers (2021-09-16T03:08:22Z) - Revisiting the Primacy of English in Zero-shot Cross-lingual Transfer [39.360667403003745]
Zero-shot cross-lingual transfer is emerging as a practical solution.
English is the dominant source language for transfer, as reinforced by popular zero-shot benchmarks.
We find that other high-resource languages such as German and Russian often transfer more effectively.
arXiv Detail & Related papers (2021-06-30T16:05:57Z) - Syntax-augmented Multilingual BERT for Cross-lingual Transfer [37.99210035238424]
This work shows that explicitly providing language syntax and training mBERT helps cross-lingual transfer.
Experiment results show that syntax-augmented mBERT improves cross-lingual transfer on popular benchmarks.
arXiv Detail & Related papers (2021-06-03T21:12:50Z) - XTREME-R: Towards More Challenging and Nuanced Multilingual Evaluation [93.80733419450225]
This paper analyzes the current state of cross-lingual transfer learning.
We extend XTREME to XTREME-R, which consists of an improved set of ten natural language understanding tasks.
arXiv Detail & Related papers (2021-04-15T12:26:12Z) - First Align, then Predict: Understanding the Cross-Lingual Ability of
Multilingual BERT [2.2931318723689276]
Cross-lingual transfer emerges from fine-tuning on a task of interest in one language and evaluating on a distinct language, not seen during the fine-tuning.
We show that multilingual BERT can be viewed as the stacking of two sub-networks: a multilingual encoder followed by a task-specific language-agnostic predictor.
While the encoder is crucial for cross-lingual transfer and remains mostly unchanged during fine-tuning, the task predictor has little importance on the transfer and can be red during fine-tuning.
arXiv Detail & Related papers (2021-01-26T22:12:38Z) - XTREME: A Massively Multilingual Multi-task Benchmark for Evaluating
Cross-lingual Generalization [128.37244072182506]
Cross-lingual TRansfer Evaluation of Multilinguals XTREME is a benchmark for evaluating the cross-lingual generalization capabilities of multilingual representations across 40 languages and 9 tasks.
We demonstrate that while models tested on English reach human performance on many tasks, there is still a sizable gap in the performance of cross-lingually transferred models.
arXiv Detail & Related papers (2020-03-24T19:09:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.