Active Learning for Natural Language Generation
- URL: http://arxiv.org/abs/2305.15040v2
- Date: Tue, 17 Oct 2023 14:37:10 GMT
- Title: Active Learning for Natural Language Generation
- Authors: Yotam Perlitz and Ariel Gera, Michal Shmueli-Scheuer, Dafna Sheinwald,
Noam Slonim, Liat Ein-Dor
- Abstract summary: We present a first systematic study of active learning for Natural Language Generation.
Our results indicate that the performance of existing AL strategies is inconsistent.
We highlight some notable differences between the classification and generation scenarios, and analyze the selection behaviors of existing AL strategies.
- Score: 17.14395724301382
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The field of Natural Language Generation (NLG) suffers from a severe shortage
of labeled data due to the extremely expensive and time-consuming process
involved in manual annotation. A natural approach for coping with this problem
is active learning (AL), a well-known machine learning technique for improving
annotation efficiency by selectively choosing the most informative examples to
label. However, while AL has been well-researched in the context of text
classification, its application to NLG remains largely unexplored. In this
paper, we present a first systematic study of active learning for NLG,
considering a diverse set of tasks and multiple leading selection strategies,
and harnessing a strong instruction-tuned model. Our results indicate that the
performance of existing AL strategies is inconsistent, surpassing the baseline
of random example selection in some cases but not in others. We highlight some
notable differences between the classification and generation scenarios, and
analyze the selection behaviors of existing AL strategies. Our findings
motivate exploring novel approaches for applying AL to generation tasks.
Related papers
- Annotation Guidelines-Based Knowledge Augmentation: Towards Enhancing Large Language Models for Educational Text Classification [11.69740323250258]
We propose the Guidelines-based Knowledge Augmentation (AGKA) approach to improve Large Language Models (LLMs)
AGKA employs GPT 4.0 to retrieve label definition knowledge from annotation guidelines, and then applies the random under-sampler to select a few typical examples.
The study results demonstrate that AGKA can enhance non-fine-tuned LLMs, particularly GPT 4.0 and Llama 3 70B.
arXiv Detail & Related papers (2024-06-03T03:09:01Z) - ALE: A Simulation-Based Active Learning Evaluation Framework for the
Parameter-Driven Comparison of Query Strategies for NLP [3.024761040393842]
Active Learning (AL) proposes promising data points to annotators they annotate next instead of a subsequent or random sample.
This method is supposed to save annotation effort while maintaining model performance.
We introduce a reproducible active learning evaluation framework for the comparative evaluation of AL strategies in NLP.
arXiv Detail & Related papers (2023-08-01T10:42:11Z) - Active Learning Principles for In-Context Learning with Large Language
Models [65.09970281795769]
This paper investigates how Active Learning algorithms can serve as effective demonstration selection methods for in-context learning.
We show that in-context example selection through AL prioritizes high-quality examples that exhibit low uncertainty and bear similarity to the test examples.
arXiv Detail & Related papers (2023-05-23T17:16:04Z) - Active Learning for Abstractive Text Summarization [50.79416783266641]
We propose the first effective query strategy for Active Learning in abstractive text summarization.
We show that using our strategy in AL annotation helps to improve the model performance in terms of ROUGE and consistency scores.
arXiv Detail & Related papers (2023-01-09T10:33:14Z) - Budget-aware Few-shot Learning via Graph Convolutional Network [56.41899553037247]
This paper tackles the problem of few-shot learning, which aims to learn new visual concepts from a few examples.
A common problem setting in few-shot classification assumes random sampling strategy in acquiring data labels.
We introduce a new budget-aware few-shot learning problem that aims to learn novel object categories.
arXiv Detail & Related papers (2022-01-07T02:46:35Z) - Meta Navigator: Search for a Good Adaptation Policy for Few-shot
Learning [113.05118113697111]
Few-shot learning aims to adapt knowledge learned from previous tasks to novel tasks with only a limited amount of labeled data.
Research literature on few-shot learning exhibits great diversity, while different algorithms often excel at different few-shot learning scenarios.
We present Meta Navigator, a framework that attempts to solve the limitation in few-shot learning by seeking a higher-level strategy.
arXiv Detail & Related papers (2021-09-13T07:20:01Z) - Reducing Confusion in Active Learning for Part-Of-Speech Tagging [100.08742107682264]
Active learning (AL) uses a data selection algorithm to select useful training samples to minimize annotation cost.
We study the problem of selecting instances which maximally reduce the confusion between particular pairs of output tags.
Our proposed AL strategy outperforms other AL strategies by a significant margin.
arXiv Detail & Related papers (2020-11-02T06:24:58Z) - Continual Learning for Natural Language Generation in Task-oriented
Dialog Systems [72.92029584113676]
Natural language generation (NLG) is an essential component of task-oriented dialog systems.
We study NLG in a "continual learning" setting to expand its knowledge to new domains or functionalities incrementally.
The major challenge towards this goal is catastrophic forgetting, meaning that a continually trained model tends to forget the knowledge it has learned before.
arXiv Detail & Related papers (2020-10-02T10:32:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.